Low Temperature Sintering of Zn3Nb2O8 Ceramics from Fine Powders
Oleg A. Shlyakhtin
Materials Science and Technology Division, Korea Institute of Science and Technology, Seoul 139-791, Korea
‡Department of Chemistry, Moscow State University, Moscow, Russia.
Search for more papers by this authorCorresponding Author
Young-Jei Oh
Materials Science and Technology Division, Korea Institute of Science and Technology, Seoul 139-791, Korea
†Author to whom correspondence should be addressed. e-mail: [email protected]Search for more papers by this authorOleg A. Shlyakhtin
Materials Science and Technology Division, Korea Institute of Science and Technology, Seoul 139-791, Korea
‡Department of Chemistry, Moscow State University, Moscow, Russia.
Search for more papers by this authorCorresponding Author
Young-Jei Oh
Materials Science and Technology Division, Korea Institute of Science and Technology, Seoul 139-791, Korea
†Author to whom correspondence should be addressed. e-mail: [email protected]Search for more papers by this authorB. Ghate—contributing editor
The work is supported by the Brain Pool/KISTEP Fellowship, Ministry of Science and Technology, Korea.
Abstract
A possibility to produce microwave (MW) dielectric materials by liquid-phase sintering of fine particles was investigated. Zn3Nb2O8 powders with a grain size 50–300 nm were obtained by the thermal decomposition of freeze-dried Zn–Nb hydroxides or frozen oxalate solutions. The crystallization of Zn3Nb2O8 from amorphous decomposition products was often accompanied by the simultaneous formation of ZnNb2O6. Maximum sintering activity was observed for single-phase crystalline Zn3Nb2O8 powders obtained at the lowest temperature. The sintering of as-obtained powders with CuO–V2O5 sintering aids results in producing MW dielectric ceramics with a density 93%–97% of the theoretical, and a Q×f product up to 36 000 GHz at sintering temperature (Ts)≥680°C. The high level of MW dielectric properties of ceramics was ensured by intensive grain growth during the densification and the thermal processing of ceramics.
References
- 1 C.-H. Wei and J.-H. Jean, “Low-Fire Processing (Ca1−xNd2x/3)TiO3 Microwave Ceramics,” J. Am. Ceram. Soc., 86 [1] 93–8 (2003).
- 2 Y.-J. Choi, J.-H. Park, J.-H. Park, and J.-G. Park, “Middle Permittivity LTCC Dielectric Compositions with Adjustable Temperature Coefficient,” Mater. Lett., 58, 3102–6 (2004).
- 3 S.-H. Yoon, D.-W. Kim, S.-Y. Cho, and K. S. Hong, “Phase Analysis and Microwave Dielectric Properties of LTCC TiO2 with Glass System,” J. Eur. Ceram. Soc., 23, 2549–52 (2003).
- 4 H. T. Kim, S. H. Kim, S. Nahm, J. D. Byun, and Y. Kim, “Low Temperature Sintering and Microwave Dielectric Properties of Zinc Metatitanate–Rutile Mixtures Using Boron,” J. Am. Ceram. Soc., 82 [11] 3043–8 (1999).
- 5 E. S. Kim, B. S. Chun, J. D. Kim, and K. H. Yoon, “Low-Temperature Sintering and Microwave Dielectric Properties of [Ca0.6(Li0.5Nd0.5)0.4]0.45Zn0.55TiO3 Ceramics,” Mater. Sci. Eng., B99, 243–6 (2003).
- 6 J.-Y. Ha, J.-W. Choi, S.-J. Yoon, D. J. Choi, K. H. Yoon, and H.-J. Kim, “Microwave Dielectric Properties of Bi2O3-Doped Ca[Li1/3Nb2/3]1−xTix]O3−δ Ceramics,” J. Eur. Ceram. Soc., 23, 2413–6 (2003).
- 7 H. Lim, S.-Y. Choi, and Y.-J. Oh, “Microwave Dielectric Properties of Sb2O5 Substituted BiNbO4 Ceramics,” J. Ceram. Soc. Jpn., 112 [5] S1583–6 (2004).
- 8 D.-K. Kwon, M. T. Lanagan, and T. R. Shrout, “Synthesis of BaTiTe3O9 Ceramics for LTCC Application and its Dielectric Properties,” J. Ceram. Soc. Jpn., 113 [3] 216–9 (2005).
- 9 M. Ohashi, H. Ogawa, A. Kan, and E. Tanaka, “Microwave Dielectric Properties of Low-Temperature Sintered Li3AlB2O6 Ceramics,” J. Eur. Ceram. Soc., 25, 2877–81 (2005).
- 10 M. Udovic, M. Valant, and D. Suvorov, “Phase Formation and Dielectric Characterization of the Bi2O3–TeO2 System Prepared in an Oxygen Atmosphere,” J. Am. Ceram. Soc., 87 [4] 891–7 (2004).
- 11 A. Y. Borisevich and P. K. Davies, “Effect of V2O5 Doping on the Sintering and Dielectric Properties of M-Phase Li1+x−yNb1−x−3yTix+4yO3,” J. Am. Ceram. Soc., 87 [6] 1047–52 (2004).
- 12 A. Borisevich and P. K. Davies, “Microwave Dielectric Properties of Li1+x−yMe1−x−3yTix+4yO3 (Me=Nb, Ta) Solid Solutions,” J. Eur. Ceram. Soc., 21, 1719–22 (2001).
- 13 M. Valant and D. Suvorov, “Processing and Dielectric Properties of Sillenite Compounds Bi12MO20−δ (M=Si, Ge, Ti, Pb, Mn, B1/2P1/2),” J. Am. Ceram. Soc., 84 [12] 2900–4 (2001).
- 14 J. R. Huang, Z. X. Xiong, C. Fang, and B. L. Feng, “Hydrothermal Synthesis of Ba2Ti9O20 Nano-Powder for Microwave Ceramics,” Mater. Sci. Eng., B99, 226–9 (2003).
- 15 L.-W. Chu, G.-H. Hsiue, Y.-J. Chiang, K.-S. Liu, and I-N. Lin, “Ultra-Fine Ba2Ti9O20 Microwave Dielectric Materials Synthesized by Chemical Process,” J. Eur. Ceram. Soc., 24, 1781–5 (2004).
- 16 M. H. Weng, T. J. Liang, and C. L. Huang, “Lowering of Sintering Temperature and Microwave Dielectric Properties of BaTi4O9 Ceramics Prepared by Polymeric Precursor Method,” J. Eur. Ceram. Soc, 22, 1693–8 (2002).
- 17 M.-H. Liang, S.-Y. Wu, C.-T. Hu, and I-N. Lin, “Enhancing the Sinterability of Ba(Mg1/3Ta2/3)O3 Dielectrics by Using Chemically-Derived Powders,” Mater. Chem. Phys., 79, 276–81 (2003).
- 18 H. Wang, R. Elsebrock, T. Schneller, R. Waser, and X. Yao, “Bismuth Zinc Niobate (Bi1.5ZnNb1.5O7) Ceramics Derived from Metallo-Organic Decomposition Precursor Solution,” Solid State Commun., 132 [7] 481–6 (2004).
- 19 Y. D. Tretyakov, N. N. Oleinikov, and O. A. Shlyakhtin, “ Powder Processing”; pp. 185–203 in Cryochemical Technology of Advanced Materials, Powder Technology Series, Edited by B. Scarlett and G. Jimbo. Chapman & Hall, London, 1997.
- 20 C.-L. Huang, M.-H. Weng, and G.-M. Shan, “Effect of V2O5 and CuO Additives on Sintering Behavior and Microwave Dielectric Properties of BiNbO4 Ceramics,” J. Mater. Sci., 35, 5443–7 (2000).
- 21 C.-F. Yang, “Improvement of the Dielectric Properties of BiNbO4 Ceramics by the Addition of CuO–V2O5 Mixtures,” J. Mater. Sci. Lett., 18, 805–7 (1999).
- 22 B. Shen, X. Yao, L. Kang, and D. Peng, “Effect of CuO or/and V2O5 Oxide Additives on Bi2O3–ZnO–Ta2O5 Based Ceramics,” Ceram. Int., 30, 1203–6 (2004).
- 23 H.-J. Lee, K.-S. Hong, S.-J. Kim, and I.-T. Kim, “Dielectric Properties of MNb2O6 Compounds (M=Ca, Mg, Co, Ni or Zn),” Mater. Res. Bull., 32 [7] 847–55 (1997).
- 24 Y. C. Zhang, J. Wang, Z. X. Yue, Z. L. Gui, and L. T. Li, “Effect of Mg2+ Substitution on Microstructure and Microwave Dielectric Properties of (Zn1−xMgx)Nb2O6 Ceramics,” Ceram. Int., 30, 87–91 (2004).
- 25 A. Kan, H. Ogawa, and H. Ohsato, “Influence of Microstructure on Microwave Dielectric Properties of ZnTa2O6 Ceramics with Low Dielectric Loss,” J. Alloys Comp, 337, 303–8 (2003).
- 26 D.-W. Kim, D.-Y. Kim, and K. S. Hong, “Phase Relations and Microwave Dielectric Properties of ZnNb2O6–TiO2,” J. Mater. Res., 15 [6] 1331–5 (2002).
- 27 R. C. Pullar, C. Vaughan, and N. McN. Alford, “The Effects of Sintering Aids Upon Dielectric Microwave Properties of Columbite Niobates, M2+Nb2O6,” J. Phys. D.: Appl. Phys., 37, 348–52 (2004).
- 28 H. R. Lee, K. H. Yoon, and E. S. Kim, “Low Temperature Sintering and Microwave Dielectric Properties of BiNbO4–ZnNb2O6 Ceramics with CuV2O6 Additive,” Jpn. J. Appl. Phys., 42 [Part 1] 6168–71 (2003).
- 29 S.-H. Wee, D.-W. Kim, S.-I. Yoo, and K.-S. Hong, “Low Temperature Sintering of V2O5-Added and -Substituted ZnNb2O6 Microwave Ceramics,” Jpn. J. Appl. Phys., 43 [6A] 3511–5 (2004).
- 30 Y. Zhang, L. Li, Z. Yue, and Z. Gui, “Low Temperature Sintered ZnNb2O6 Microwave Dielectric Ceramics Doped with CuO–Bi2O3–V2O5 Additions,” J. Mater. Sci. Lett., 22, 595–7 (2003).
- 31 H. Brusset, R. Mahe, and U. Aung Kyi, “Etude De Niobates Divalents Binares Et Ternaries a l'etat Solide,” Mat. Res. Bull., 7, 1061–74 (1972).
- 32 D.-W. Kim, J.-H. Kim, J.-R. Kim, and K.-S. Hong, “Phase Constitutions and Microwave Dielectric Properties of Zn3Nb2O8–TiO2,” Jpn. J. Appl. Phys, 40 [Part 1] 5994–8 (2001).
- 33 D.-W. Kim, I.-T. Kim, B. Park, K. S. Hong, and J.-H. Kim, “Microwave Dielectric Properties of (1−x)Cu3Nb2O8–xZn3Nb2O8 Ceramics,” J. Mater. Res., 16 [5] 1465–70 (2001).
- 34 H. Langbein and G. Woelki, “Preparation of Copper Niobates by Thermal Decomposition of Freeze-Dried Complex Oxalate Solutions,” Thermochim. Acta, 264, 67–73 (1995).
- 35 O. Yamaguchi, N. Maruyama, and K. Hirota, “New Modification of 3ZnO*Nb2O5,” J. Mater. Sci. Lett., 10, 445–7 (1991).
- 36 Y.-C. Lee, C.-H. Lin, and I-N. Lin, “Bi–Zn–Nb–O Microwave Dielectric Materials for Multilayer Filter Application,” Mater. Chem. Phys., 79, 124–8 (2003).
- 37 F. A. Lopez, A. Lopez-Delgado, J. L. Martin de Vidales, and E. Villa, “Synthesis of Nanocrystalline Zinc Ferrite Powders from Sulphuric Pickling Waste Water,” J. Alloys Comp., 265, 291–6 (1998).
- 38 J. L. Martin de Vidales, A. Lopez-Delgado, E. Villa, and F. A. Lopez, “The Effect of the Starting Solution on the Physico-Chemical Properties of Zinc Ferrite Synthesized at Low Temperature,” J. Alloys Comp., 287, 276–83 (1999).
- 39
B. W. Hakki and
P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,”
IEEE Trans. Microwave Theory Tech., MTT-8, 402–10 (1960).
10.1109/TMTT.1960.1124749 Google Scholar
- 40 H. Langbein, M. Bremer, and I. Krabbes, “CuX2O6 and Ba3CuX2O9 (X=Nb, Ta): Influence of the Preparation Conditions on Phase Formation and Phase Composition,” Solid State Ion., 101–103, 579–84 (1997).
- 41 B. Malecka, E. Drozdz-Ciesla, and A. Malecki, “Mechanism and Kinetics of Thermal Decomposition of Zinc Oxalate,” Thermochim. Acta, 423, 13–8 (2004).
- 42 M. Takehana, T. Nishino, K. Sugawara, and T. Sugawara, “Preparation of Zinc Oxide Varistor by a Wet Chemical Method,” Mater. Sci. Eng., B41, 186–9 (1996).
- 43 R. German, “ Liquid-Phase Sintering”; pp. 225–313 in Sintering Theory and Practice, Edited by R. German. John Wiley & Sons, New York, 1996.
- 44 I. I. Ivanova, I.B Dimitriev, M.R Marinov, and D. Stavrakeva, “Phase Equilibrium in the Copper(II) Oxide-Vanadium(V) Oxide System,” Dok. Bolg. Akad. Nauk, 27 [4] 491–4 (1974).
- 45 S. Prasad, “Electrometric Studies of the Formation of Niobates as a Function of pH,” J. Brazil. Chem. Soc., 6 [1] 7–12 (1995).