Monitoring the t → m Martensitic Phase Transformation by Photoluminescence Emission in Eu3+-Doped Zirconia Powders
Riccardo Marin
Department of Molecular Sciences and Nanosystems, Ca' Foscari Università di Venezia, I-30172 Venezia-Mestre, Italy
Search for more papers by this authorGabriele Sponchia
Department of Molecular Sciences and Nanosystems, Ca' Foscari Università di Venezia, I-30172 Venezia-Mestre, Italy
Search for more papers by this authorEnrico Zucchetta
Department of Molecular Sciences and Nanosystems, Ca' Foscari Università di Venezia, I-30172 Venezia-Mestre, Italy
Search for more papers by this authorCorresponding Author
Pietro Riello
Department of Molecular Sciences and Nanosystems, Ca' Foscari Università di Venezia, I-30172 Venezia-Mestre, Italy
Author to whom correspondence should be addressed. e-mail: [email protected]Search for more papers by this authorFrancesco Enrichi
Civen/NanoFAB, via delle Industrie 5, 30175 Venezia-Marghera, Italy
Search for more papers by this authorGoffredo De Portu
ISTEC, Institute of Science and Technology for Ceramics, via Granarolo 64, I-48018 Faenza, Ravenna, Italy
Search for more papers by this authorAlvise Benedetti
Department of Molecular Sciences and Nanosystems, Ca' Foscari Università di Venezia, I-30172 Venezia-Mestre, Italy
Search for more papers by this authorRiccardo Marin
Department of Molecular Sciences and Nanosystems, Ca' Foscari Università di Venezia, I-30172 Venezia-Mestre, Italy
Search for more papers by this authorGabriele Sponchia
Department of Molecular Sciences and Nanosystems, Ca' Foscari Università di Venezia, I-30172 Venezia-Mestre, Italy
Search for more papers by this authorEnrico Zucchetta
Department of Molecular Sciences and Nanosystems, Ca' Foscari Università di Venezia, I-30172 Venezia-Mestre, Italy
Search for more papers by this authorCorresponding Author
Pietro Riello
Department of Molecular Sciences and Nanosystems, Ca' Foscari Università di Venezia, I-30172 Venezia-Mestre, Italy
Author to whom correspondence should be addressed. e-mail: [email protected]Search for more papers by this authorFrancesco Enrichi
Civen/NanoFAB, via delle Industrie 5, 30175 Venezia-Marghera, Italy
Search for more papers by this authorGoffredo De Portu
ISTEC, Institute of Science and Technology for Ceramics, via Granarolo 64, I-48018 Faenza, Ravenna, Italy
Search for more papers by this authorAlvise Benedetti
Department of Molecular Sciences and Nanosystems, Ca' Foscari Università di Venezia, I-30172 Venezia-Mestre, Italy
Search for more papers by this authorAbstract
In this work, we demonstrate that the martensitic t → m phase transformation of ZrO2 powder stabilized with Eu3+ and Eu3+/Y3+ ions, can be effectively monitored by photoluminescence (PL) spectroscopy. As the luminescent properties of Eu3+ from within a host lattice are strongly influenced by the coordination geometry of the ion, we used the emission spectrum to monitor structural changes of ZrO2. We synthesized Eu3+-doped and Eu3+/Y3+-codoped samples via the coprecipitation method, followed by calcination. We promoted the martensitic transformation by applying mechanical compression cycles with an increasing pressure, and deduced the consequential structural changes from the relative intensities of the 5D0 → 7F2 hypersensitive transitions, centered, respectively, at 606 and 613 nm whether the Eu3+ is in the eightfold coordinated site of the tetragonal phase or in the sevenfold coordinated site of the monoclinic phase. We suggest that the unique emission profile for Eu3+ ions in different symmetry sites can be exploited as a simple analytical tool for remote testing of mechanical components that are already mounted and in use. The structural changes observed by PL spectroscopy were corroborated by X-ray powder diffraction (XRPD), with the phase compositions and volume fractions being determined by Rietveld analysis.
References
- 1R. Garvie, R. Hannink, and R. Pascoe, “Ceramic Steel,” Nature, 258, 703–4 (1975).
- 2M. M. R. Boutz, A. J. A. Winnubst, and A. J. Burggraaf, “Yttria-Ceria Stabilized Tetragonal Zirconia Polycrystals: Sintering, Grain Growth and Grain Boundary Segregation,” J. Eur. Ceram. Soc., 13, 89–102 (1994).
- 3R. Hannink, “Transformation Toughening in Zirconia Containing Ceramics,” J. Am. Ceram. Soc., 87, 461–87 (2004).
10.1111/j.1151-2916.2000.tb01221.x Google Scholar
- 4E. Tsalouchou, M. J. Cattell, J. C. Knowles, P. Pittayachawan, and A. McDonald, “Fatigue and Fracture Properties of Yttria Partially Stabilized Zirconia Crown Systems,” Den. Mater., 24, 308–18 (2008).
- 5J. Judes and V. Kamaraj, “Preparation and Characterization of Yttria Stabilized Zirconia Minispheres by the sol-gel Drop Generation Method,” Mater. Sci.: Pol., 27, 407–15 (2009).
- 6G. Y. Akimov, E. V. Chaika, and G. A. Marinin, “Wear and Fracture Toughness of Partially Stabilized Zirconia Ceramics Under dry Friction Against Steel,” J. Frict. Wear, 30, 77–9 (2009).
- 7C.-L. Yang, H.-I. Hsiang, and C.-C. Chen, “Characteristics of Yttria Stabilized Tetragonal Zirconia Powder Used in Optical Fiber Connector Ferrule,” Ceram. Int., 31, 297–303 (2005).
- 8P. Mercera, J. van Ommen, E. Doesburg, A. J. Burggraaf, and J. Roes, “Stabilized Tetragonal Zirconium Oxide as a Support for Catalysts Evolution of the Texture and Structure on Calcination in Static air,” Appl. Catal., 78, 79–96 (1991).
- 9M. Trunec and Z. Chlup, “Higher Fracture Toughness of Tetragonal Zirconia Ceramics Through Nanocrystalline Structure,” Scripta Mater., 61, 56–9 (2009).
- 10D. Green, R. Hannink, and M. Swain, Transformation Toughening of Ceramics. CRC Press, Boca Raton, Florida, 1989.
- 11P. Duwez, F. Brown, and F. Odell, “The Zirconia-Yttria System,” J. Electrochem. Soc., 98, 356–62 (1951).
- 12J. Dexpert-Ghys, M. Faucher, and P. Caro, “Site Selective Spectroscopy and Structural Analysis of Yttria-Doped Zirconias,” J. Solid State Chem., 54, 179–92 (1984).
- 13P. K. Schelling, S. R. Phillpot, and W. Dieter, “Mechanism of the Cubic-to-Tetragonal Phase Transition in Zirconia and Yttria-Stabilized Zirconia by Molecular-Dynamics Simulation,” J. Am. Ceram. Soc., 84, 1609–19 (2001).
- 14S. Park, J. Kim, M. Kim, H. Song, and C. Park, “Microscopic Observation of Degradation Behavior in Yttria and Ceria Stabilized Zirconia Thermal Barrier Coatings Under hot Corrosion,” Surf. Coat. Technol., 190, 357–65 (2005).
- 15C.-W. Kuo, Y.-H. Lee, K.-Z. Fung, and M.-C. Wang, “Phase Transformation Kinetics of 3%mol Yttria Partially Stabilized Zirconia (3Y-PSZ) Nanopowders Prepared by a non-Isothermal Process,” J. Non-Cryst. Solids, 351, 304–11 (2005).
- 16M. R. N. Soares, C. Nico, M. Peres, N. Ferreira, A. J. S. Fernandes, T. Monteiro, and F. M. Costa, “Structural and Optical Properties of Europium Doped Zirconia Single Crystals Fibers Grown by Laser Floating Zone,” J. Appl. Phys., 109, 013516, 5pp (2011).
- 17M. Chen, B. Hallstedt, and L. Gauckler, “Thermodynamic Modeling of the ZrO2–YO1.5 System,” Solid State Ionics, 170, 255–74 (2004).
- 18J. D. Fidelus, W. Lojkowski, D. Millers, K. Smits, and L. Grigorjeva, “ Advanced nanocrystalline ZrO2 for optical oxygen sensors;” Proceedings of 2009 IEEE Sensors, art. no. 5398385, 1268–72 2009.
- 19J. Luo, R. J. Ball, and R. Stevens, “Gadolinia Doped Ceria/Yttria Stabilised Zirconia Electrolytes for Solid Oxide Fuel Cell Application,” J. Mater. Sci., 39, 235–40 (2004).
- 20K. Smits, D. Jankovica, A. Sarakovskis, and D. Millers, “Up-Conversion Luminescence Dependence on Structure in Zirconia Nanocrystals,” Opt. Mater., 35, 462–6 (2013).
- 21D. Simeone, G. Baldinozzi, D. Gosset, and S. Le Caer, “Phase Transition of Pure Zirconia Under Irradiation: A Textbook Example,” Nucl. Instrum. Methods Phys. Res., B, 250, 95–100 (2006).
- 22R. C. Garvie, “The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect,” J. Phys. Chem., 69, 1238–43 (1965).
- 23K. Smits, L. Grigorjeva, D. Millers, A. Sarakovskis, A. Opalinska, J. D. Fidelus, and W. Lojkowski, “Europium Doped Zirconia Luminescence,” Opt. Mater., 32, 827–31 (2010).
- 24F. F. Lange, “Transformation-Toughened ZrO2: Correlations Between Grain Size Control and Composition in the System ZrO2-Y2O3,” J. Am. Ceram. Soc., 69, 240–2 (1986).
- 25A. Benedetti, G. Fagherazzi, and F. Pinna, “Preparation and Structural Characterization of Ultrafine Zirconia Powders,” J. Am. Ceram. Soc., 72, 467–9 (1989).
- 26A. Benedetti, G. Fagherazzi, F. Pinna, and S. Polizzi, “Structural Properties of Ultra-Fine Zirconia Powders Obtained by Coprecipitation Methods,” J. Mater. Sci., 25, 1473–8 (1990).
- 27P. Riello, P. Canton, and G. Fagherazzi, “Quantitative Analysis of Phase Transformations in Semicrystalline Materials Using the Rietveld Refinement,” J. Appl. Crystallogr., 31, 78–82 (1998).
- 28W. A. Dollase, “Correction of Intensities for Preferred Orientation in Powder Diffractometry: Application of the March Model,” J. Appl. Crystallogr., 19, 267–72 (1986).
- 29P. Riello, G. Fagherazzi, P. Canton, D. Clemente, and M. Signoretto, “Determining the Degree of Crystallinity in Semicrystalline Materials by Means of Rietveld Analysis,” J. Appl. Crystallogr., 28, 121–6 (1995).
- 30P. Riello, G. Fagherazzi, D. Clemente, and P. Canton, “X-ray Rietveld Analysis With a Physically Based Background,” J. Appl. Crystallogr., 28, 115–20 (1995).
- 31I. Freris, P. Riello, F. Enrichi, D. Cristofori, and A. Benedetti, “Synthesis and Optical Properties of sub-Micron Sized Rare Earth-Doped Zirconia Particles,” Opt. Mater., 33, 1745 (2011).
- 32P. Bouvier, E. Djurado, and G. Lucazeau, “High-Pressure Structural Evolution of Undoped Tetragonal Nanocrystalline Zirconia,” Phys. Rev. B: Condens. Matter, 62, 8731–7 (2000).
- 33M. H. Tuilier, J. Dexpert-Ghys, H. Dexpert, and P. Lagarde, “X-Ray Absorption Study of the ZrO2–Y2O3 System,” J. Solid State Chem., 69, 153–61 (1987).
- 34Y. Cong, B. Li, S. Yue, D. Fan, and X.-J. Wang, “Effect of Oxygen Vacancy on Phase Transition and Photoluminescence Properties of Nanocrystalline Zirconia Synthesized by the One-Pot Reaction,” J. Phys. Chem. C, 113, 13974–8 (2009).
- 35K. Smits, L. Grigorjeva, D. Millers, A. Sarakovskis, J. Grabis, and W. Lojkowski, “Intrinsic Defect Related Luminescence in ZrO2,” J. Lumin., 131, 2058–62 (2011).
- 36H. Nakajima and T. Mori, “Photoluminescence Excitation Bands Corresponding to Defect States due to Oxygen Vacancies in Yttria-Stabilized Zirconia,” J. Alloy. Compd., 408, 728–31 (2006).