The Compelling Case for Indentation as a Functional Exploratory and Characterization Tool
David B. Marshall
Teledyne Scientific Co, Thousand Oaks, California, 91360
Search for more papers by this authorRobert F. Cook
Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899
Search for more papers by this authorNitin P. Padture
School of Engineering, Brown University, Providence, Rhode Island, 02912
Search for more papers by this authorMichelle L. Oyen
Department of Engineering, Cambridge University, Cambridge, CB2 1PZ UK
Search for more papers by this authorAntonia Pajares
Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Badajoz, 06006 Spain
Search for more papers by this authorJodie E. Bradby
Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 Australia
Search for more papers by this authorIvar E. Reimanis
Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado, 80401
Search for more papers by this authorRajan Tandon
Analytical Technologies, Sandia National Laboratories, Albuquerque, New Mexico, 87185
Search for more papers by this authorTrevor F. Page
School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
Search for more papers by this authorGeorge M. Pharr
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee, 37996
Oak Ridge National Laboratories, Materials Science and Technology Division, Oak Ridge, Tennessee, 37831
Search for more papers by this authorCorresponding Author
Brian R. Lawn
Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899
Author to whom correspondence should be addressed. e-mail: [email protected]Search for more papers by this authorDavid B. Marshall
Teledyne Scientific Co, Thousand Oaks, California, 91360
Search for more papers by this authorRobert F. Cook
Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899
Search for more papers by this authorNitin P. Padture
School of Engineering, Brown University, Providence, Rhode Island, 02912
Search for more papers by this authorMichelle L. Oyen
Department of Engineering, Cambridge University, Cambridge, CB2 1PZ UK
Search for more papers by this authorAntonia Pajares
Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, Badajoz, 06006 Spain
Search for more papers by this authorJodie E. Bradby
Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 Australia
Search for more papers by this authorIvar E. Reimanis
Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado, 80401
Search for more papers by this authorRajan Tandon
Analytical Technologies, Sandia National Laboratories, Albuquerque, New Mexico, 87185
Search for more papers by this authorTrevor F. Page
School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
Search for more papers by this authorGeorge M. Pharr
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee, 37996
Oak Ridge National Laboratories, Materials Science and Technology Division, Oak Ridge, Tennessee, 37831
Search for more papers by this authorCorresponding Author
Brian R. Lawn
Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899
Author to whom correspondence should be addressed. e-mail: [email protected]Search for more papers by this authorAbstract
The utility of indentation testing for characterizing a wide range of mechanical properties of brittle materials is highlighted in light of recent articles questioning its validity, specifically in relation to the measurement of toughness. Contrary to assertion by some critics, indentation fracture theory is fundamentally founded in Griffith–Irwin fracture mechanics, based on model crack systems evolving within inhomogeneous but well-documented elastic and elastic–plastic contact stress fields. Notwithstanding some numerical uncertainty in associated stress intensity factor relations, the technique remains an unrivalled quick, convenient and economical means for comparative, site-specific toughness evaluation. Most importantly, indentation patterns are unique fingerprints of mechanical behavior and thereby afford a powerful functional tool for exploring the richness of material diversity. At the same time, it is cautioned that unconditional usage without due attention to the conformation of the indentation patterns can lead to overstated toughness values. Limitations of an alternative, more engineering approach to fracture evaluation, that of propagating a precrack through a “standard” machined specimen, are also outlined. Misconceptions in the critical literature concerning the fundamental nature of crack equilibrium and stability within contact and other inhomogeneous stress fields are discussed.
References
- 1H. Hertz, Hertz's Miscellaneous Papers, Chs. 5,6. Macmillan, London, 1896.
- 2F. C. Frank and B. R. Lawn, “On the Theory of Hertzian Fracture,” Proc. Roy. Soc. Lond, 299 [1458] 291–306 (1967).
- 3B. R. Lawn and T. R. Wilshaw, “Indentation Fracture: Principles and Applications,” J. Mater. Sci., 10 [6] 1049–81 (1975).
- 4P. Ostojic and R. McPherson, “A Review of Indentation Fracture Theory: Its Development, Principles and Limitations,” Int. J. Fract., 33, 297–312 (1987).
- 5R. F. Cook and G. M. Pharr, “Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics,” J. Am. Ceram. Soc., 73 [4] 787–817 (1990).
- 6B. R. Lawn, Fracture of Brittle Solids, 2nd edition. Cambridge University Press, Cambridge, 1993.
- 7B. R. Lawn, “Indentation of Ceramics with Spheres: A Century After Hertz,” J. Am. Ceram. Soc., 81 [8] 1977–94 (1998).
- 8B. R. Lawn and R. F. Cook, “Probing Material Properties with Sharp Indenters: A Retrospective,” J. Mater. Sci., 47 [1] 1–22 (2012).
- 9G. D. Quinn and R. C. Bradt, “On the Vickers Indentation Fracture Test,” J. Am. Ceram. Soc., 90 [3] 673–80 (2007).
- 10R. Morrell, “Fracture Toughness Testing for Advanced Technical Ceramics: Internationally Agreed Good Practice,” Adv. Appl. Ceram., 105 [2] 88–98 (2006).
- 11J. J. Kruzic, D. K. Kim, K. J. Koester, and R. O. Ritchie, “Indentation Techniques for Evaluating the Fracture Toughness of Biomaterials and Hard Tissues,” J. Mech. Behav. Biomed. Mater., 2, 384–95 (2009).
- 12J. Wade, S. Ghosh, P. Claydon, and H. Wu, “Contact Damage of Silicon Carbide Ceramics with Different Grain Structures Measured by Hertzian and Vickers Indentation,” J. Eur. Ceram. Soc., 35, 1725–36 (2015).
- 13G. R. Anstis, P. Chantikul, D. B. Marshall, and B. R. Lawn, “A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I. Direct Crack Measurements,” J. Am. Ceram. Soc., 64 [9] 533–8 (1981).
- 14D. Tabor, Hardness of Metals. Clarendon, Oxford, 1951.
- 15K. L. Johnson, Contact Mechanics. Cambridge University Press, London, 1985.
- 16S. S. Chiang, D. B. Marshall, and A. G. Evans, “The Response of Solids to Elastic/Plastic Indentation. I. Stresses and Residual Stresses,” J. Appl. Phys., 53 [1] 298–311 (1982).
- 17D. J. Green, Introduction to Mechanical Properties of Ceramics. Cambridge University Press, Cambridge, 1998.
- 18A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Phil. Trans. Roy. Soc. Lond., 221, 163–98 (1920).
- 19G. R. Irwin, “ Fracture”; pp. 557–94 in Handbuch der Physik, Vol. 6, Edited by Springer-Verlag, Berlin, 1958.
- 20G. I. Barenblatt, “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” Adv. Appl. Mech., 7, 55–129 (1962).
- 21J. B. Quinn, S. S. Scherrer, and G. D. Quinn, “ The Increasing Role of Fractography in the Dental Community”; pp. 251–70 in Fractography of Glasses and Ceramics V: Ceramic Transactions, Vol 199, Edited by J. R. Varner, G. D. Quinn, and M. Wightman. John Wiley, Hoboken, NJ, 2007.
- 22S. M. Wiederhorn, “Influence of Water Vapor on Crack Propagation in Soda-Lime Glass,” J. Am. Ceram. Soc., 50 [8] 407–14 (1967).
- 23F. C. Roesler, “Brittle Fractures Near Equilibrium,” Proc. Phys. Soc. Lond., 69, 981–92 (1956).
- 24F. Auerbach, “Measurement of Hardness,” Ann. Phys. Chem., 43, 61–100 (1891).
- 25B. R. Lawn and E. R. Fuller, “Equilibrium Penny-Like Cracks in Indentation Fracture,” J. Mater. Sci., 10 [12] 2016–24 (1975).
- 26S. K. Lee, S. Wuttiphan, and B. R. Lawn, “Role of Microstructure in Hertzian Contact Damage in Silicon Nitride: I. Mechanical Characterization,” J. Am. Ceram. Soc., 80 [9] 2367–81 (1997).
- 27F. B. Langitan and B. R. Lawn, “Hertzian Fracture Experiments on Abraded Glass Surfaces as Definitive Evidence for an Energy Balance Explanation of Auerbach's Law,” J. Appl. Phys., 40 [10] 4009–17 (1969).
- 28J. D. Poloniecki and T. R. Wilshaw, “Determination of Surface Crack Size Densities in Glass,” Nature, 229, 226–7 (1971).
- 29D. M. Marsh, “Plastic Flow and Fracture in Glass,” Proc. Roy. Soc. Lond, 282 [1388] 33–43 (1964).
- 30B. R. Lawn and A. G. Evans, “A Model for Crack Initiation in Elastic/Plastic Indentation Fields,” J. Mater. Sci., 12 [11] 2195–9 (1977).
- 31B. R. Lawn, A. G. Evans, and D. B. Marshall, “Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System,” J. Am. Ceram. Soc., 63 [9–10] 574–81 (1980).
- 32S. Palmqvist, “Method att Bestamma Segheten hos Spread Material, Sarskit Hardmettaler,” Jernkontorets Ann., 141, 300–7 (1957).
- 33A. G. Evans and E. A. Charles, “Fracture Toughness Determinations by Indentation,” J. Am. Ceram. Soc., 59 [7–8] 371–2 (1976).
- 34K. Nihara, “Indentation Fracture Toughness of Brittle Materials for Palmqvist Cracks,” J. Mater. Sci. Lett., 2, 221–3 (1983).
- 35M. T. Laugier, “Palmqvist Crack Extension and the Center-Loaded Penny Crack Analogy,” J. Am. Ceram. Soc., 68 [2] C51–2 (1985).
- 36C. B. Ponton and R. D. Rawlings, “Vickers Indentation Fracture Toughness Test: Part I. Review of Literature and Formulation of Standardised Indentation Toughness Equations,” Mater. Sci. Technol., 5 [9] 865–72 (1989).
- 37C. B. Ponton and R. D. Rawlings, “Vickers Indentation Fracture Toughness Test: Part II. Application and Critical Evaluation of Standardised Indentation Toughness Equations,” Mater. Sci. Technol., 5 [10] 961–76 (1989).
- 38Z. Burghard, A. Zimmermann, J. Rödel, F. Aldinger, and B. R. Lawn, “Crack Opening Profiles of Indentation Cracks in Normal and Anomalous Glasses,” Acta Mater., 52 [2] 293–7 (2004).
- 39D. B. Marshall, B. R. Lawn, and A. G. Evans, “Elastic/Plastic Indentation Damage in Ceramics: The Lateral Crack System,” J. Am. Ceram. Soc., 65 [11] 561–6 (1982).
- 40G. M. Pharr, D. S. Harding, and W. C. Oliver, “ Measurement of Fracture Toughness in Thin Films and Small Volumes Using Nanoindentation Methods”; pp. 449–61 in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, Edited by M. Nastasi, D. M. Parkin, and H. Gleiter. Kluwer Academic Publishers, Dordrecht, 1993.
- 41G. M. Pharr, “Measurement of Mechanical Properties by Ultra-Low Load Indentation,” Mater. Sci. Eng., 253 [1–2] 151–9 (1998).
- 42D. J. Morris and R. F. Cook, “In Situ Cube-Corner Indentation of Soda-Lime Glass and Fused Silica,” J. Am. Ceram. Soc., 87 [8] 1494–501 (2004).
- 43D. J. Morris and R. F. Cook, “Radial Fracture During Indentation by Acute Probes: I. Description by and Indentation Wedging Model,” Int. J. Fract., 136 [1–4] 237–64 (2004).
- 44D. J. Morris, A. M. Vodnik, and R. F. Cook, “Radial Fracture During Indentation by Acute Probes: II. Experimental Observations of Cube-Corner and Vickers Indentation,” Int. J. Fract., 136 [1–4] 265–84 (2004).
- 45W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., 7 [6] 1564–83 (1992).
- 46J. L. Cuy, A. B. Mann, K. J. Livi, M. F. Teaford, and T. P. Weihs, “Nanoindentation Mapping of the Mechanical Properties of Human Molar Tooth Enamel,” Arch. Oral Biol., 7 [4] 281–91 (2002).
- 47P. E. D. Morgan and D. B. Marshall, “Ceramic Composites of Monazite and Alumina,” J. Am. Ceram. Soc., 78 [11] 1553–63 (1995).
- 48D. B. Marshall, “An Indentation Method for Measuring Matrix-Fiber Frictional Stresses in Ceramic Composites,” J. Am. Ceram. Soc., 67 [12] C259–60 (1984).
- 49P. F. Becher, E. Y. Sun, C. H. Hseuh, K. B. Alexander, S. L. Waters, and C. G. Westmoreland, “Debonding of Interfaces Between Beta-Silicon Nitride Whiskers and Si-Al-Y Oxynitride Glasses,” Acta Mater., 44 [10] 3881–93 (1996).
- 50A. K. Bembey, M. L. Oyen, A. J. Bushby, and A. Boyde, “Viscoelastic Properties of Bone as a Function of Hydration State Determined by Nanoindentation,” Philos. Mag., 86 [33–35] 5691–703 (2006).
- 51M. L. Oyen and R. F. Cook, “A Practical Guide for Analysis of Nanoindentation Data,” J. Mech. Behav. Biomed. Mater., 2, 396–407 (2009).
- 52B. R. Lawn, “Hertzian Fracture in Single Crystals with the Diamond Structure,” J. Appl. Phys., 39 [10] 4828–36 (1968).
- 53Y.-W. Rhee, H.-W. Kim, Y. Deng, and B. R. Lawn, “Brittle Fracture Versus Quasiplasticity in Ceramics: A Simple Predictive Index,” J. Am. Ceram. Soc., 84 [3] 561–5 (2001).
- 54F. Guiberteau, N. P. Padture, H. Cai, and B. R. Lawn, “Indentation Fatigue: A Simple Cyclic Hertzian Test for Measuring Damage Accumulation in Polycrystalline Ceramics,” Philos. Mag. A, 68 [5] 1003–16 (1993).
- 55H. Cai, M. A. Stevens Kalceff, and B. R. Lawn, “Deformation and Fracture of Mica-Containing Glass–Ceramics in Hertzian Contacts,” J. Mater. Res., 9 [3] 762–70 (1994).
- 56B. R. Lawn, N. P. Padture, H. Cai, and F. Guiberteau, “Making Ceramics ‘Ductile’,” Science, 263, 1114–6 (1994).
- 57N. P. Padture and B. R. Lawn, “Toughness Properties of a Silicon Carbide with an In-Situ-Induced Heterogeneous Grain Structure,” J. Am. Ceram. Soc., 77 [10] 2518–22 (1994).
- 58Y. Zhang, J.-K. Song, and B. R. Lawn, “Deep Penetrating Conical Cracks in Brittle Layers from Hydraulic Cyclic Contact,” J. Biomed. Mater. Res., 73B [1] 186–93 (2005).
- 59A. Pajares, L. Wei, B. R. Lawn, N. P. Padture, and C. C. Berndt, “Mechanical Characterization of Plasma-Sprayed Ceramic Coatings on Metal Substrates by Contact Testing,” Mater. Sci. Eng., 208 [2] 158–65 (1996).
- 60H. Chai, B. R. Lawn, and S. Wuttiphan, “Fracture Modes in Brittle Coatings with Large Interlayer Modulus Mismatch,” J. Mater. Res., 14 [9] 3805–17 (1999).
- 61V. Imbeni, J. J. Kruzic, G. W. Marshall, S. J. Marshall, and R. O. Ritchie, “The Dentin–Enamel Junction and the Fracture of Human Teeth,” Nature Mater., 4, 229–32 (2005).
- 62H. Chai, J. J.-W. Lee, P. J. Constantino, P. W. Lucas, and B. R. Lawn, “Remarkable Resilience of Teeth,” Proc. Natl Acad. Sci. USA, 106, 7289–93 (2009).
- 63A. Barani, A. J. Keown, M. B. Bush, J. J.-W. Lee, H. Chai, and B. R. Lawn, “Mechanics of Longitudinal Cracks in Tooth Enamel,” Acta Biomater., 7, 2285–92 (2011).
- 64A. Barani, H. Chai, B. R. Lawn, and M. B. Bush, “Mechanics Analysis of Molar Tooth Splitting,” Acta Biomater., 15, 237–43 (2015).
- 65D. B. Marshall and B. R. Lawn, “Residual Stress Effects in Sharp-Contact Cracking: I. Indentation Fracture Mechanics,” J. Mater. Sci., 14 [8] 2001–12 (1979).
- 66A. Arora, D. B. Marshall, B. R. Lawn, and M. V. Swain, “Indentation Deformation/Fracture of Normal and Anomalous Glasses,” J. Non-Cryst. Solids, 31 [3] 415–28 (1979).
- 67T. M. Gross, “Deformation and Cracking Behavior of Glasses Indented with Diamond Tips of Various Sharpness,” J. Non-Cryst. Solids, 358, 3445–52 (2012).
- 68R. F. Cook, L. M. Braun, and W. R. Cannon, “Trapped Cracks at Indentations: I. Experiments on Yttria-Tetragonal Zirconia Polycrystals,” J. Mater. Sci., 29, 2133–42 (1994).
- 69M. S. Kaliszewski, et al., “Indentation Studies on Y2O3-Stabilized ZrO2: I Development of Indentation-Induced Cracks,” J. Am. Ceram. Soc., 77 [5] 1185–93 (1994).
- 70M. L. Oyen and R. F. Cook, “Load-Displacement Behaviour During Sharp Indentation of Viscous–Elastic–Plastic Materials,” J. Mater. Res., 18 [1] 139–50 (2003).
- 71Y.-G. Jung, A. Pajares, R. Banerjee, and B. R. Lawn, “Strength of Silicon, Sapphire and Glass in the Subthreshold Flaw Region,” Acta Mater., 52 [12] 3459–66 (2004).
- 72B. R. Lawn, T. Jensen, and A. Arora, “Brittleness as an Indentation Size Effect,” J. Mater. Sci., 11 [3] 573–5 (1976).
- 73B. R. Lawn and D. B. Marshall, “Hardness, Toughness, and Brittleness: An Indentation Analysis,” J. Am. Ceram. Soc., 62 [7–8] 347–50 (1979).
- 74J. Jang and G. M. Pharr, “Influence of Indenter Angle on Cracking in Si and Ge During Nanoindentation,” Acta Mater., 56, 4458–69 (2008).
- 75M. V. Swain and J. T. Hagan, “Indentation Plasticity and the Ensuing Fracture of Glass,” J. Phys. D: Appl. Phys., 9, 2201–14 (1976).
- 76J. T. Hagan and M. V. Swain, “The Origin of Median and Lateral Cracks at Plastic Indents in Brittle Materials,” J. Phys.: D, 11 [15] 2091–102 (1978).
- 77J. T. Hagan, “Micromechanics of Crack Nucleation During Indentations,” J. Mater. Sci., 14, 2975–80 (1979).
- 78J. T. Hagan, “Shear Deformation Under Pyramidal Indenters in Soda-Lime Glass,” J. Mater. Sci., 15, 1417–24 (1980).
- 79B. R. Lawn, T. P. Dabbs, and C. J. Fairbanks, “Kinetics of Shear-Activated Indentation Crack Initiation in Soda-Lime Glass,” J. Mater. Sci., 18 [9] 2785–97 (1983).
- 80T. F. Page, W. C. Oliver, and C. J. McHargue, “The Deformation Behavior of Ceramic Crystals Subjected to Very Low Load (Nano)Indentations,” J. Mater. Res., 7 [2] 450–73 (1992).
- 81M. J. Hill and D. J. Rowcliffe, “Deformation of Silicon at Low Temperatures,” J. Mater. Sci., 9 [10] 1569–76 (1974).
- 82B. J. Hockey and B. R. Lawn, “Electron Microscopy of Microcracking About Indentations in Aluminum Oxide and Silicon Carbide,” J. Mater. Sci., 10 [8] 1275–84 (1975).
- 83I. Zarudi, L. C. Zhang, and M. V. Swain, “Microstructure Evolution in Monocrystalline Silicon in Cyclic Microindentations,” J. Mater. Res., 18 [4] 758–61 (2003).
- 84D. R. Clarke, M. C. Kroll, P. D. Kirchner, R. F. Cook, and B. J. Hockey, “Amorphization and Conductivity of Silicon and Germanium Induced by Indentation,” Phys. Rev. Lett., 60 [21] 2156–9 (1988).
- 85J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, and P. Munroe, “Mechanical Deformation in Silicon by Micro-Indentation,” J. Mater. Res., 16 [5] 1500–7 (2001).
- 86J. E. Bradby, J. S. Williams, J. Wong-Leung, S. O. Kucheyev, M. V. Swain, and P. Munroe, “Spherical Indentation of Compound Semiconductors,” Philos. Mag. A, 82 [10] 1931–9 (2002).
- 87V. Domnich and Y. Gogotsi, “Phase Transformations in Silicon Under Contact Loading,” Rev. Adv. Mater. Sci., 3, 1–36 (2002).
- 88Y. B. Gerbig, C. A. Michaels, and R. F. Cook, “In Situ Observation of the Spatial Distribution of Crystaline Phases During Pressure-Induced Transformations of Indented Silicon Thin Films,” J. Mater. Res., 30 [1] 390–406 (2015).
- 89N. G. F. Naylor and T. F. Page, “Microstructural Studies of the Temperature Dependence of Deformation Structures Around Hardness Indentations in Ceramics,” J. Microsc., 130 [3] 345–60 (1983).
- 90T. F. Page and S. J. Bull, “Measuring and Modelling the Instrumented Indentation (Nanoindentation) Response of Coated Systems,” Philos. Mag. A, 86 [33–35] 5331–46 (2006).
- 91P. J. Burnett and T. F. Page, “An Investigation of Ion-Implantation-Induced Near-Surface Stresses and Their Effects in Sapphire and Glass,” J. Mater. Sci., 20, 4624–46 (1985).
- 92S. J. Bull and E. G. Berasetegui, “An Overview of the Potential of Quantitative Coating Adhesion Measurement by Scratch Testing,” Tribol. Int., 39 [2] 99–114 (2006).
- 93J. Chen and S. J. Bull, “Indentation Fracture and Toughness Assessment for Thin Optical Coatings on Glass,” J. Phys. D: Appl. Phys., 40 [18] 5401–17 (2007).
- 94D. B. Marshall and B. R. Lawn, “An Indentation Technique for Measuring Stresses in Tempered Glass Surfaces,” J. Am. Ceram. Soc., 60 [1–2] 86–7 (1977).
- 95T. Y. Tsui, W. C. Oliver, and G. M. Pharr, “Influences of Stress on the Measurement of Mechanical Properties Using Nanoindentation: I. Experimental Studies in an Aluminum Alloy,” J. Mater. Res., 11, 752–9 (1996).
- 96T. Y. Tsui, W. C. Oliver, and G. M. Pharr, “Influences of Stress on the Measurement of Mechanical Properties Using Nanoindentation: II. Finite Element Simulations,” J. Mater. Res., 11, 760–8 (1996).
- 97D. J. Green, P. Z. Cai, and G. L. Messing, “Residual Stresses in Alumina–Zirconia Laminates,” J. Eur. Ceram. Soc., 19 [13] 2511–7 (1999).
- 98R. F. Cook, “Toughening of a Cordierite Glass-Ceramic by Compressive Surface Layers,” J. Am. Ceram. Soc., 88 [10] 2798–808 (2005).
- 99I. E. Reimanis, C. Seick, K. Fitspatrick, E. R. Fuller, and S. Landin, “Spontaneous Ejecta from β-Eucryptite Composites,” J. Am. Ceram. Soc., 90 [8] 2497–501 (2007).
- 100S. Ramalingam, I. E. Reimanis, and C. Packard, “Determining Activation Volume for the Pressure-Induced Phase Transformation in β-Eucryptite Through Nanoindentation,” J. Am. Ceram. Soc., 95 [6] 2051–8 (2012).
- 101K. L. Johnson, K. Kendall, and A. D. Roberts, “Surface Energy and the Contact of Elastic Solids,” Proc. Roy. Soc. Lond., 324 [1558] 301–13 (1971).
- 102Y. Murakami, et al. (eds), Stress Intensity Factors Handbook, p. 669. Pergamon Press, Oxford, 1987.
- 103D. B. Marshall, “Controlled Flaws in Ceramics: A Comparison of Knoop and Vickers Indentation,” J. Am. Ceram. Soc., 66 [2] 127–31 (1983).
- 104D. B. Marshall, “Geometrical Effects in Elastic/Plastic Indentation,” J. Am. Ceram. Soc., 67 [1] 57–60 (1984).
- 105R. F. Cook, “Strength and Sharp Contact Fracture of Silicon,” J. Mater. Sci., 41, 841–72 (2006).
- 106J. Lankford, “Indentation Microfracture in the Palmqvist Crack Regime: Implication for Fracture Toughness Evaluation by the Indentation Method,” J. Mater. Sci. Lett., 1, 493–5 (1982).
- 107R. Tandon, D. J. Green, and R. F. Cook, “Surface Stress Effects on Indentation Fracture Sequences,” J. Am. Ceram. Soc., 73 [9] 2619–27 (1990).
- 108R. Tandon and T. E. Buchheit, “Use of Cube-Corner Nano-Indentation Crack Length Measurements to Estimate Residual Stresses Over Small Spatial Dimensions,” J. Am. Ceram. Soc., 90 [2] 502–8 (2007).
- 109R. Tandon and T. E. Buchheit, “A Technique for Measuring Stresses in Small Spatial Regions Using Cube-Corner Indentation: Application to Tempered Glass Plates,” J. Eur. Ceram. Soc., 27, 2407–14 (2007).
- 110H. Chai and B. R. Lawn, “A Universal Relation for Edge Chipping from Sharp Contacts in Brittle Materials: A Simple Means of Toughness Evaluation,” Acta Mater., 55, 2555–61 (2007).
- 111A. C. Fischer-Cripps and B. R. Lawn, “Stress Analysis of Contact Deformation in Quasi-Plastic Ceramics,” J. Am. Ceram. Soc., 79 [10] 2609–18 (1996).
- 112S. M. Wiederhorn, “Fracture Surface Energy of Glass,” J. Am. Ceram. Soc., 52 [2] 99–105 (1969).
- 113A. A. Kaminskii, et al., “New Data on the Physical Properties of Y3Al5O12-Based Nanocrystalline Laser Ceramics1,” Nanomaterials, 48 [3] 562–6 (2003).
- 114G.-D. Zhan, J. D. Kunz, J. Wan, and A. K. Mukherjee, “Single-Wall Carbon Nanotubes as Attractive Toughening Agents in Alumina-Based Nanocomposites.,” Nature Mater., 2, 38–42 (2003).
- 115X. Wang, N. P. Padture, and H. Tanaka, “Contact-Damage-Resistant Ceramic/Single-Wall Carbon Nanotubes and Ceramic/Graphite Composites,” Nature Mater., 3, 539–44 (2004).
- 116L. P. Mullins, M. S. Bruzzi, and P. McHugh, “Authors’ Response to ‘Comments on Measurement of the Microstructural Fracture Toughness of Cortical Bone Using Indentation Fracture’,” J. Biomech., 41 [14] 2602–3 (2008).
- 117J. J. Kruzic and R. O. Ritchie, “Comments on ‘Measurement of the Microstructural Fracture Toughness of Cortical Bone Using Indentation Fracture’,” J. Biomech., 41, 1379–80 (2008).
- 118L. P. Mullins, M. S. Bruzzi, and P. McHugh, “Measurement of the Microstructural Fracture Toughness of Cortical Bone Using Indentation Fracture,” J. Biomech., 40 [14] 3185–8 (2007).
- 119S. M. Wiederhorn and B. J. Hockey, “Effect of Material Parameters on the Erosion Resistance of Brittle Materials,” J. Mater. Sci., 18 [3] 766–80 (1983).
- 120D. B. Marshall and B. R. Lawn, “Flaw Characteristics in Dynamic Fatigue: The Influence of Residual Contact Stresses,” J. Am. Ceram. Soc., 63 [910] 532–6 (1980).
- 121B. R. Lawn, “ The Indentation Crack as a Model Indentation Flaw”; pp. 1–25 in Fracture Mechanics of Ceramics, Vol. 5, Edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. Lange. Plenum, New York City, NY, 1983.
- 122B. R. Lawn, “Fracture and Deformation in Brittle Solids: A Perspective on the Issue of Scale,” J. Mater. Res., 19 [1] 22–9 (2004).
- 123B. R. Lawn and H. Komatsu, “The Nature of Deformation Around Pressure Cracks on Diamond,” Philos. Mag., 14 [130] 689–99 (1966).
- 124D. B. Marshall and B. R. Lawn, “ Indentation of Brittle Materials”; pp. 26–46 in Micro Indentation Hardness Testing, Edited by P. J. Blau and B. R. Lawn. A.S.T.M. Special Technical Publication 899, Philadelphia, PA, 1986.
- 125T. F. Page, L. Reister, and S. V. Hainsworth, “ The Plasticity Response of 6H-SiC and Related Isostructural Materials to Nanoindentation: Slip vs Densification”; pp. 113–8 in Fundamentals of Nanoindentation and Nanotribology. Vol. 522, Edited by N. R. Moody, W. W. Gerberich, S. P. Baker, and N. Burnham. Materials Research Society, Warrendale, PA, 1998.