Multilayer lead-free piezoceramic composites: Influence of co-firing on microstructure and electromechanical behavior
Corresponding Author
Azatuhi Ayrikyan
Department of Materials Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
Correspondence
Azatuhi Ayrikyan, Department of Materials Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Email: [email protected]
Search for more papers by this authorFlorian Weyland
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorSebastian Steiner
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorMichael Duerrschnabel
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorLeopoldo Molina-Luna
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorJurij Koruza
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorKyle G. Webber
Department of Materials Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
Search for more papers by this authorCorresponding Author
Azatuhi Ayrikyan
Department of Materials Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
Correspondence
Azatuhi Ayrikyan, Department of Materials Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Email: [email protected]
Search for more papers by this authorFlorian Weyland
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorSebastian Steiner
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorMichael Duerrschnabel
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorLeopoldo Molina-Luna
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorJurij Koruza
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
Search for more papers by this authorKyle G. Webber
Department of Materials Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
Search for more papers by this authorAbstract
In this study lead-free 2-2 and 0-3 ceramic/ceramic composites comprised of the non-ergodic relaxor 0.93(Bi1/2Na1/2)TiO3–0.07BaTiO3 and ergodic relaxor 0.94Bi0.5(Na0.75K0.25)0.5TiO3–0.06BiAlO3 were investigated. The macroscopic electromechanical behavior was characterized as a function of continuent content, revealing an enhancement in the unipolar strain from the multilayer composite structure. Systematic evaluation of the effects of co-sintering on microstructural properties, such as grain size and porosity, revealed potential mechanisms by which the increase in unipolar strain was achieved. In addition, interdiffusion between the constituents was observed, providing evidence for the formation of a functionally graded ceramic by co-sintering. These data are contrasted with high-resolution energy dispersive X-ray microanalysis for measurement of chemical composition across the interface of 2-2 ceramics. These findings provide insight into how synthesis routes can be optimized for tailoring the enhancement of electromechanical properties of lead-free electroceramic composite systems.
Supporting Information
Filename | Description |
---|---|
jace14887-sup-0001-FigS1.pngPNG image, 466.5 KB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Chopra I. Review of state of art of smart structures and integrated systems. AIAA J. 2002; 40: 2145-2187.
- 2Rödel J, Jo W, Seifert KTP, Anton E-M, Granzow T, Damjanovic D. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc. 2009; 92: 1153-1177.
- 3Noheda B. Structure and high-piezoelectricity in lead oxide solid solutions. Curr Opin Solid State Mater Sci. 2002; 6: 27-34.
- 4Leontsev SO, Eitel RE. Progress in engineering high strain lead-free piezoelectric ceramics. Sci Technol Adv Mater. 2010; 11: 044302-044315.
- 5Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D. Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc. 2015; 35: 1659-1681.
- 6Zhang S-T, Kounga AB, Aulbach E, Ehrenberg H, Rödel J. Giant strain in lead-free piezoceramics Bi[sub 0.5]Na[sub 0.5]TiO[sub 3]–BaTiO[sub 3]–K[sub 0.5]Na[sub 0.5]NbO[sub 3] system. Appl Phys Lett 2007; 91: 112906.
- 7Daniels JE, Jo W, Rödel J, Jones JL. Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: case study in a 93%(Bi[sub 0.5]Na[sub 0.5])TiO[sub 3]–7% BaTiO[sub 3] piezoelectric ceramic. Appl Phys Lett 2009; 95: 032904.
- 8Dittmer R, Jo W, Rödel J, Kalinin S, Balke N. Nanoscale insight into lead-free BNT-BT- x KNN. Adv Funct Mater. 2012; 22: 4208-4215.
- 9Schmitt LA, Kling J, Hinterstein M, et al. Structural investigations on lead-free Bi1/2Na1/2TiO3-based piezoceramics. J Mater Sci. 2011; 46: 4368-4376.
- 10Damjanovic D. Hysteresis in piezoelectric and ferroelectric materials. In: I Mayergoyz, G Bertotti, eds. The Science of Hysteresis. Vol 3. New York, NY: Elsevier; 2005: 337-465.
- 11Lee DS, Lim DH, Kim MS, Kim KH, Jeong S. Electric field-induced deformation behavior in mixed Bi0.5Na0.5TiO3 and Bi0.5(Na0.75K0.25)0.5TiO3–BiAlO3. Appl Phys Lett 2011; 99: 062906.
- 12Groh C, Franzbach DJ, Jo W, et al. Relaxor/ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics. Adv Funct Mater. 2013; 356–362.
- 13Newnham RE. Composite electroceramics. Ferroelectrics. 1986; 68: 1-32.
- 14Khansur NH, Groh C, Jo W, et al. Tailoring of unipolar strain in lead-free piezoelectrics using the ceramic/ceramic composite approach. J Appl Phys 2014; 115: 124108.
- 15Zhang H, Groh C, Zhang Q, Jo W, Webber KG, Rödel J. Large strain in relaxor/ferroelectric composite lead-free piezoceramics. Adv Electron Mater. 2015; 1500018.
- 16Franzbach DJ, Xu B-X, Mueller R, Webber KG. The effects of polarization dynamics and domain switching energies on field induced phase transformations of perovskite ferroelectrics. Appl Phys Lett 2011; 99: 162903.
- 17Jeong S-J, Lee D-S, Kim M-S, et al. Temperature dependence of polarization and strain of bismuth-based ceramic composites. J Electroceram. 2014; 33: 230-238.
- 18Xu JIE. Interdiffusion reaction in the PZT/PNN functionally gradient piezoelectric ceramic materials. J Mater Sci. 1998; 33: 1023-1030.
- 19Feng G, Shaobo Q, Zupei Y, Changsheng T. Interface and ionic interdiffusion in cofired ferroelectric/ferrite multilayer composites. J Mater Sci Lett. 2002; 21: 15-19.
- 20Iwagami N, Nagata H, Sakaguchi I, Takenaka T. Diffusion behavior of Ag electrodes into (Bi1/2Na1/2)TiO3 ceramics. J Ceram Soc Jpn. 2016; 124: 644-647.
- 21Gobeljic D, Shvartsman VV, Belianinov A, et al. Nanoscale mapping of heterogeneity of the polarization reversal in lead-free relaxor-ferroelectric ceramic composites. Nanoscale. 2016; 8: 2168-2176.
- 22Groh C, Jo W, Rödel J. Tailoring strain properties of (0.94−x)Bi1/2Na1/2TiO3–0.06BaTiO3–xK0.5Na0.5NbO3 ferroelectric/relaxor composites. J Am Ceram Soc. 2014; 97: 1465-1470.
- 23Ayrikyan A, Rojas V, Molina-Luna L, Acosta M, Koruza J, Webber KG. Enhancing electromechanical properties of lead-free ferroelectrics with bilayer ceramic/ceramic composites. IEEE Trans Ultrason Ferroelectr Freq Control. 2015; 62: 997-1006.
- 24Dausch DE, Furman E, Wang F, Haertling GH. PLZT-based multilayer composite thin films, part I: experimental investigation of composite film structures. Ferroelectrics. 1996; 177: 221-236.
- 25Yoon C-B, Lee S-H, Lee S-M, Kim H-E. Co-firing of PZN-PZT flextensional actuators. J Am Ceram Soc. 2004; 87: 1663-1668.
- 26Lu J, Hng HH, Song X, Zhang T, Ma J. Cosintering of a bimodal pore distribution layered structure: constitutive models and experiments. J Am Ceram Soc. 2011; 94: 1528-1535.
- 27Ngernchuklin P, Ryu J, Eamchotchawalit C, Park D-S. Soft/hard PZT monolithic bi-layer composite actuator. Ceram Int. 2013; 39: S541-S544.
- 28Buchanan RC, Park E, Surana R, Tennakone H, Tennakone K. High piezoelectric actuation response in graded Nd2O3 and ZrO2 doped BaTiO3 structures. J Electroceram. 2011; 26: 116-121.
- 29Zhang H, Yang S, Yang S, Kong D, Zhang B-P, Zhang Y. Reliability enhancement in nickel-particle-dispersed alkaline niobate piezoelectric composites and actuators. J Eur Ceram Soc. 2011; 31: 795-800.
- 30Rong X, Chen J, Li J-T, Zhuang J, Ning X-J. Structural stability and mechanical property of Ni(111)–graphene–Ni(111) layered composite: a first-principles study. J Appl Phys. 2015; 54.
- 31Cheng C-E, Dinelli F, Yu C-T, et al. Influences of thermal annealing on P3HT/PCBM interfacial properties and charge dynamics in polymer solar cells Influences of thermal annealing on P3HT/PCBM interfacial properties and charge dynamics in polymer solar cells. Jpn J Appl Phys. 2015; 54: 122301.
- 32Chartier T, Merle D, Besson JL. Laminar ceramic composites. J Eur Ceram Soc. 1995; 15: 101-107.
- 33Green DJ, Guillon O, Rödel J. Constrained sintering: a delicate balance of scales. J Eur Ceram Soc. 2008; 28: 1451-1466.
- 34Amaral L, Jamin C, Senos AMR, Vilarinho PM, Guillon O. Constrained sintering of BaLa4Ti4O15 thick films: pore and grain anisotropy. J Eur Ceram Soc. 2013; 33: 1801-1808.
- 35Kuscer D, Levassort F, Lethiecq M, Abellard A-P, Kosec M. Lead-zirconate-titanate thick films by electrophoretic deposition for high-frequency ultrasound transducers. J Am Ceram Soc. 2012; 95: 892-900.
- 36Wongdamnern N, Maurya D, Zhou Y, Sanghadasa M, Yimnirun R, Priya S. Complex permittivity scaling of functionally graded composites. Mater Res Express. 2014; 1: 016305.
- 37Su Lee D, Jong Jeong S, Soo Kim M, Hyuk Koh J. Electric field induced polarization and strain of Bi-based ceramic composites. J Appl Phys, 2012; 112: 124109.
- 38Balluffi RW, Allen S, Carter WC. Kinetics of Materials. Hoboken, New Jersey: John Wiley & Sons Inc; 2005.
10.1002/0471749311 Google Scholar
- 39Mortensen A, Suresh S. Functionally graded metals and metal-ceramic composites: part 1 processing. Int Mater Rev. 2013; 40: 239-265.
10.1179/imr.1995.40.6.239 Google Scholar
- 40Zhang H, Li J-F, Zhang B-P. Sintering and piezoelectric properties of co-fired lead zirconate titanate/ag composites. J Am Ceram Soc. 2006; 89: 1300-1307.
- 41Ullah A, Ahn CW, Hussain A, Kim IW. Effect of BiAlO3 concentration on the dielectric and piezoelectric properties of lead-free (Bi0.5Na0.5)0.94Ba0.06TiO3 piezoelectric ceramics. J Electroceram. 2012; 30: 82-86.
- 42Jeong S-J, Kim M-S, Jang S-M, Kim I-S, Mohsin S, Song J-S. Comparative study of the polarization and strain of inclusion-type and layer-type 0.94Bi(NaK)TiO3–0.06BiAlO3/Bi(NaK)TiO3 ceramic composites. J Alloys Compd. 2015; 646: 1058-1067.
- 43Andrault D, Neuville DR, Flank AM, Wang Y. Cation sites in Al-rich MgSiO3 perovskites. Am Mineral. 1998; 83: 1045-1053.
- 44Kim I-S, Jung W-H, Inaguma Y, Nakamura T, Itoh M. Dielectric properties of a-site deficient perovskite-type lanthanum-calcium-titanium oxide solid solution system. Mater Res Bull. 1995; 30: 307-316.
- 45Ni F, Luo L, Li W, Chen H. A-site vacancy-induced giant strain and the electrical properties in non-stoichiometric ceramics Bi 0.5+x(Na1−yKy)0.5−3x TiO3. J Phys D Appl Phys 2012; 45: 415103.
- 46Glaum J, Hoffman M. Electric fatigue of lead-free piezoelectric materials. J Am Ceram Soc. 2014; 97: 665-680.
- 47Haertling GH. Ferroelectric ceramics: history and technology. J Am Ceram Soc. 1999; 82: 797-818.
- 48Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys. 1998; 1267.
- 49Nuffer J, Lupascu DC, Rödel J. Damage evolution in ferroelectric PZT induced by bipolar electric cycling. Acta Mater. 2000; 48: 3783-3794.
- 50Lee DS, Jeong SJ, Kim MS, Kim KH. Effect of sintering time on strain in ceramic composite consisting of 0.94Bi0.5(Na0.75K0.25)0.5TiO3–0.06BiAlO3 with (Bi0.5Na0.5)TiO3. Jpn J Appl Phys. 2013; 52: 021801.
- 51Bai W, Chen D, Huang Y, Shen B, Zhai J, Ji Z. Electromechanical properties and structure evolution in BiAlO3-modified Bi0.5Na0.5TiO3–BaTiO3 lead-free piezoceramics. J Alloys Compd. 2016; 667: 6-17.
- 52Fu P, Xu Z, Chu R, Li W, Wu X, Zhao M. Structure and electrical properties of (Bi0.5Na0.5)0.94Ba0.06TiO3–Bi0.5(Na0.82K0.18)0.5TiO3–BiAlO3 lead free piezoelectric ceramics. Mater Chem Phys. 2013; 138: 140-145.
- 53Furman E, Li G, Haertling GH. An investigation of the resonance properties of rainbow devices. Ferroelectrics. 1994; 160: 357-369.
- 54Topolov VY, Krivoruchko AV, Bisegna P. Electromechanical coupling and its anisotropy in a novel 1–3–0 composite based on single-domain 0.58Pb(Mg1/3Nb2/3)O3–0.42PbTiO3 crystal. Compos Sci Technol. 2011; 71: 1082-1088.
- 55Sadowski T, Marsavina L. Multiscale modelling of two-phase ceramic matrix composites. Comput Mater Sci. 2011; 50: 1336-1346.
- 56Jamin C, Rasp T, Kraft T, Guillon O. Constrained sintering of alumina stripe patterns on rigid substrates: effect of stripe geometry. J Eur Ceram Soc. 2013; 33: 3221-3230.
- 57Bordia RK, Raj R. Sintering behavior of ceramic films constrained by a rigid substrate. J Am Ceram Soc. 1985; 68: 287-292.
- 58Cho J-H, Jeong Y-H, Nam J-H, Yun J-S, Park Y-J. Fracture toughness and electrical properties of 0.975Bi(Na0.78K0.22)TiO3–0.025BiAlO3 ceramics. Jpn J Appl Phys 2013; 52: 101501.
- 59Davis M, Damjanovic D, Setter N. Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals. Phys Rev B. 2006; 73: 014115.
- 60Webber KG, Zhang Y, Jo W, Daniels JE, Rödel J. High temperature stress-induced ‘double loop-like’ phase transitions in Bi-based perovskites. J Appl Phys 2010; 108: 014101.
- 61Schader FH, Wang Z, Hinterstein M, Daniels JE, Webber KG. Stress-modulated relaxor-to-ferroelectric transition in lead-free (Na1/2Bi1/2)TiO3–BaTiO3 ferroelectrics. Phys Rev B. 2016; 93: 054304.
- 62Bobnar V, Kutnjak Z, Pirc R, Levstik A. Electric - field - temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate. Phys Rev B. 1999; 60: 6420.
- 63Bermejo R, Torres Y, Sánchez-Herencia AJ, Baudín C, Anglada M, Llanes L. Residual stresses, strength and toughness of laminates with different layer thickness ratios. Acta Mater. 2006; 54: 4745-4757.
- 64Johnson-Wilke RL, Wilke RHT, Wallace M, et al. Ferroelectric/ferroelastic domain wall motion in dense and porous tetragonal lead zirconate titanate films. IEEE Trans Ultrason Ferroelectr Freq Control. 2015; 62: 46-55.
- 65Jiang QY, Cross LE. Effects of porosity on electric fatigue behaviour in PLZT and PZT ferroelectric ceramics. J Mater Sci. 1993; 28: 4536-4543.
- 66Khachaturyan R, Zhukov S, Schultheiß J, et al. Polarization-switching dynamics in bulk ferroelectrics with isometric and oriented anisometric pores. J Phys D Appl Phys 2017; 50: 045303.
- 67Zuo R, Aulbach E, Rödel J. Experimental determination of sintering stresses and sintering viscosities. Acta Mater. 2003; 51: 4563-4574.
- 68Amaral L, Jamin C, Senos AMR, Vilarinho PM, Guillon O. Effect of the Substrate on the Constrained Sintering of BaLa 4 Ti 4 O 15 Thick Films. J Am Ceram Soc. 2012; 95: 3781-3787.
- 69Srdic VV, Winterer M, Hahn H. Sintering behavior of nanocrystalline zirconia doped with alumina prepared by chemical vapor synthesis. J Am Ceram Soc. 2000; 83: 1853-1860.
- 70Arlt G. The influence of microstructure on the properties of ferroelectric ceramics. Ferroelectrics. 1990; 104: 217-227.
- 71Kiselev DA, Bdikin IK, Selezneva EK, Bormanis K, Sternberg A, Kholkin AL. Grain size effect and local disorder in polycrystalline relaxors via scanning probe microscopy. J Phys D Appl Phys. 2007; 40: 7109-7112.
- 72Yoon M-S, Khansur NH, Choi B-K, Lee Y-G, Ur S-C. The effect of nano-sized BNBT on microstructure and dielectric/piezoelectric properties. Ceram Int. 2009; 35: 3027-3036.