Promoting effects of alternating current and input power on grain growth behavior of cubic ZrO2 polycrystals
Corresponding Author
Kohta Nambu
Department of Materials Science and Engineering, Kyushu University, Fukuoka, Japan
Research Center for Functional Materials, National Institute for Material Science, Tsukuba, Ibaraki, Japan
Correspondence
Kohta Nambu, Department of Materials Science and Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 891-0395, Japan.
Email: [email protected]
Search for more papers by this authorAkio Ishii
Department of Materials Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
Search for more papers by this authorKohei Soga
Department of Materials Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
Search for more papers by this authorKoji Morita
Department of Materials Science and Engineering, Kyushu University, Fukuoka, Japan
Research Center for Functional Materials, National Institute for Material Science, Tsukuba, Ibaraki, Japan
Department of Materials Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
Search for more papers by this authorCorresponding Author
Kohta Nambu
Department of Materials Science and Engineering, Kyushu University, Fukuoka, Japan
Research Center for Functional Materials, National Institute for Material Science, Tsukuba, Ibaraki, Japan
Correspondence
Kohta Nambu, Department of Materials Science and Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 891-0395, Japan.
Email: [email protected]
Search for more papers by this authorAkio Ishii
Department of Materials Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
Search for more papers by this authorKohei Soga
Department of Materials Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
Search for more papers by this authorKoji Morita
Department of Materials Science and Engineering, Kyushu University, Fukuoka, Japan
Research Center for Functional Materials, National Institute for Material Science, Tsukuba, Ibaraki, Japan
Department of Materials Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
Search for more papers by this authorAbstract
The grain growth behavior during an AC flash event was examined in 8 mol% yttria-stabilized cubic zirconia (8Y-CSZ) polycrystals. The effects of current/power densities on the grain growth behavior were investigated in 8Y-CSZ samples with different specific surface areas at a constant sample temperature and applied field strength. The grain growth rate of flash-treated 8Y-CSZ was 300 times faster than that of heat-treated 8Y-CSZ at the same sample temperature in the absence of an electric current/field, suggesting that the promoted grain growth cannot be ascribed only to a thermal effect but also to an athermal effect occurring during the AC flash event. Moreover, the grain growth during the flash treatment strongly depends on the applied current/power densities and grain size; in particular, the grain growth showed enhancements with increasing applied current/power densities and for relatively small grain sizes. This result suggests that the grain boundary diffusivity of cations, which are regarded as the rate-controlling species for grain growth, could be accelerated by tuning the current/power densities during the flash event. The grain growth mechanism was characterized using a grain growth exponent (n) value of 4.8 for the flash treatment at high current/power densities and using a conventional value of n = 3 under normal heat treatment conditions. The dependence of the grain growth behavior on the AC current/power density suggests that because the cation diffusivity is accelerated due to the formation of numerous point defects during the AC flash event, the grain growth mechanism might depend on the current/power densities and differ from that of conventional grain growth.
Supporting Information
Filename | Description |
---|---|
jace19679-sup-0001-SuppMat.docx385.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Cologna M, Rashkova B, Raj R. Flash sintering of nanograin zirconia in <5 s at 850°C: rapid communications of the American Ceramic Society. J Am Ceram Soc. 2010; 93(11): 3556–3559. https://doi.org/10.1111/j.1551-2916.2010.04089.x
- 2Dancer CEJ. Flash sintering of ceramic materials. Mater Res Express. 2016; 3(10):102001. https://doi.org/10.1088/2053-1591/3/10/102001
- 3Yu M, Grasso S, Mckinnon R, Saunders T, Reece MJ. Review of flash sintering: materials, mechanisms and modelling. Adv Appl Ceram. 2017; 116(1): 24–60. https://doi.org/10.1080/17436753.2016.1251051
- 4Biesuz M, Sglavo VM. Flash sintering of ceramics. J Eur Ceram Soc. 2019; 39(2–3): 115–143. https://doi.org/10.1016/j.jeurceramsoc.2018.08.048
- 5Todd RI, Zapata-Solvas E, Bonilla RS, Sneddon T, Wilshaw PR. Electrical characteristics of flash sintering: thermal runaway of Joule heating. J Eur Ceram Soc. 2015; 35(6): 1865–1877. https://doi.org/10.1016/j.jeurceramsoc.2014.12.022
- 6Raj R. Joule heating during flash-sintering. J Eur Ceram Soc. 2012; 32(10): 2293–2301. https://doi.org/10.1016/j.jeurceramsoc.2012.02.030
- 7Yoshida H, Sasaki Y. Low temperature and high strain rate superplastic flow in structural ceramics induced by strong electric-field. Scr Mater. 2018; 146: 173–177. https://doi.org/10.1016/j.scriptamat.2017.11.042
- 8Wang K, Chen G, Wang Q, Fu X, Zhou W. Unusual electrode-dependent deformation of 3Y-TZP induced by weak electric current in oxygen-lean atmosphere. Scr Mater. 2021; 205:114220. https://doi.org/10.1016/j.scriptamat.2021.114220
- 9Sasaki Y, Morita K, Yamamoto T, Soga K, Masuda H, Yoshida H. Electric current dependence of plastic flow behavior with large tensile elongation in tetragonal zirconia polycrystal under a DC field. Scr Mater. 2021; 194:113659. https://doi.org/10.1016/j.scriptamat.2020.113659
- 10Morita K, Kim B-N. Effect of electric current on high temperature flow behavior of 8Y-CSZ ceramics. J Eur Ceram Soc. 2022; 42(5): 2341–2348. https://doi.org/10.1016/j.jeurceramsoc.2022.01.018
- 11Liu D, Wang K, Zhao K, Liu J, An L. Creep behavior of zirconia ceramics under a strong DC field. Scr Mater. 2022; 214:114654. https://doi.org/10.1016/j.scriptamat.2022.114654
- 12Motomura H, Tamao D, Nambu K, Masuda H, Yoshida H. Athermal effect of flash event on high-temperature plastic deformation in Y2O3-stabilized tetragonal ZrO2 polycrystal. J Eur Ceram Soc. 2022; 42(12): 5045–5052. https://doi.org/10.1016/j.jeurceramsoc.2022.04.055
- 13Morikawa D, Nambu K, Morita K, Yoshida H, Soga K. Effect of direct and alternating current (DC and AC) fields on creep behavior of 8 mol% Y2O3 stabilized cubic ZrO2 polycrystal. J Eur Ceram Soc. 2023; 43(8): 3498–3506. https://doi.org/10.1016/j.jeurceramsoc.2023.02.051
- 14Tasaka M, Maeda K, Nambu K, Motomura H, Yoshida H. Sintering and deformation properties of forsterite + diopside aggregates in an electrical field. Phys Earth Planet Inter. 2023; 341:107051. https://doi.org/10.1016/j.pepi.2023.107051
- 15Xia J, Ren K, Liu W, Wang Y. Ultrafast joining of zirconia ceramics using electric field at low temperatures. J Eur Ceram Soc. 2019; 39(10): 3173–3179. https://doi.org/10.1016/j.jeurceramsoc.2019.04.023
- 16Xia J, Ren K, Wang Y. One-second flash joining of zirconia ceramic by an electric field at low temperatures. Scr Mater. 2019; 165: 34–38. https://doi.org/10.1016/j.scriptamat.2019.02.004
- 17Nambu K, Kitaoka T, Morita K, Soga K, Tokunaga T, Yamamoto T, et al. Flash self-joining of Y-TZP ceramics assisted with an AC electric field. J Am Ceram Soc. 2023; 106(3): 2073–2082. https://doi.org/10.1111/jace.18889
- 18Morita K, Naito F, Terada D. Microcrack healing in zirconia ceramics under a DC electric field/current. J Eur Ceram Soc. 2021; 41(16): 282–289. https://doi.org/10.1016/j.jeurceramsoc.2021.09.044
- 19Takahashi S, Morita K, Nambu K, Terada D, Kobayashi K, Tokunaga T, et al. Effect of initial grain size on crack healing behavior under DC electric field of zirconia (8Y-CSZ) ceramic. Adv Eng Mater. 2023; 25:2201807. https://doi.org/10.1002/adem.202201807
- 20Kawabata S, Takahashi S, Nambu K, Morita K. Effect of DC and AC electric fields on crack healing behavior in 8 mol% yttria stabilized cubic zirconia polycrystal. J Am Ceram Soc. 2023; 106: 6163–6176. https://doi.org/10.1111/jace.19269
- 21Naito F, Morita K, Terada D. Micro-crack healing in cubic zirconia (8Y-CSZ) using flash event. J Jpn Inst Met Mater. 2022; 86(2): 23–29. https://doi.org/10.2320/jinstmet.J2021044
- 22Yoshida H, Morita K, Kim B-N, Sakka Y, Yamamoto T. Reduction in sintering temperature for flash-sintering of yttria by nickel cation-doping. Acta Mater. 2016; 106: 344–352. https://doi.org/10.1016/j.actamat.2016.01.037
- 23Nakagawa Y, Yoshida H, Uehashi A, Tokunaga T, Sasaki K, Yamamoto T. Electric current-controlled synthesis of BaTiO3. J Am Ceram Soc. 2017; 100(9): 3843–3850. https://doi.org/10.1111/jace.14938
- 24Nambu K, Hayasaka H, Yamamoto T, Yoshida H. Photoluminescence properties of undoped and Si4+-doped polycrystalline Y2O3 phosphors prepared by flash-sintering. Appl Phys Express. 2019; 12(7):075504. https://doi.org/10.7567/1882-0786/ab2b6e
- 25Charalambous H, Jha SK, Okasinski JS, Tsakalakos T. Generation of electric-field stabilized zirconium monoxide secondary phase within cubic zirconia. Scr Mater. 2021; 190: 22–26. https://doi.org/10.1016/j.scriptamat.2020.08.026
- 26Itoh A, Tokunaga T, Kodaira A, Yoshida H, Yamamoto T. Variation of photoluminescence intensity depending on the timing of electric field application during isothermal flash sintering for 3mol%Y2O3–ZrO2 polycrystal. Ceram Int. 2022; 48(19): 28712–28717. https://doi.org/10.1016/j.ceramint.2022.06.185
- 27Wang S, Mishra TP, Deng Y, Kaletsch A, Bram M, Broeckmann C. Experimental and numerical studies of densification and grain growth of 8YSZ during flash sintering. Adv Eng Mater. 2023; 25:2201744. https://doi.org/10.1002/adem.202201744
- 28Kim S-W, Kim SG, Jung J-I, Kang S-JL, Chen I-W. Enhanced grain boundary mobility in yttria-stabilized cubic zirconia under an electric current. J Am Ceram Soc. 2011; 94(12): 4231–4238. https://doi.org/10.1111/j.1551-2916.2011.04800.x
- 29Morisaki N, Yoshida H, Tokunaga T, Sasaki K, Yamamoto T. Consolidation of undoped, monoclinic zirconia polycrystals by flash sintering. J Am Ceram Soc. 2017; 100(9): 3851–3857. https://doi.org/10.1111/jace.14954
- 30Dong Y, Wang H, Chen I-W. Electrical and hydrogen reduction enhances kinetics in doped zirconia and ceria: I. Grain growth study. J Am Ceram Soc. 2017; 100(3): 876–886. https://doi.org/10.1111/jace.14615
- 31Dong Y, Chen I. Electrical and hydrogen reduction enhances kinetics in doped zirconia and ceria: II. Mapping electrode polarization and vacancy condensation in YSZ. J Am Ceram Soc. 2018; 101(3): 1058–1073. https://doi.org/10.1111/jace.15274
- 32Nakamoto A, Nambu K, Masuda H, Yoshida H. Chemical bonding and crystal structure in flash sintered Y2O3 under DC or AC field. J Eur Ceram Soc. 2023; 43(8): 3516–3523. https://doi.org/10.1016/j.jeurceramsoc.2023.01.062
- 33Ji W, Zhang J, Wang W, Fu Z, Todd RI. The microstructural origin of rapid densification in 3YSZ during ultra-fast firing with or without an electric field. J Eur Ceram Soc. 2020; 40(15): 5829–5836. https://doi.org/10.1016/j.jeurceramsoc.2020.07.027
- 34Grimley CA, Prette ALG, Dickey EC. Effect of boundary conditions on reduction during early stage flash sintering of YSZ. Acta Mater. 2019; 174: 271–278. https://doi.org/10.1016/j.actamat.2019.05.001
- 35Dong J, Biesuz M, Sglavo VM, Kermani M, Su X, Saunders T, et al. Athermal electric field effects in flash sintered zirconia. Adv Appl Ceram. 2021; 120(4): 193–201. https://doi.org/10.1080/17436753.2021.1919361
- 36Prajzler V, Maca K, Šťastný P, Todd RI. Abnormal grain growth in DC flash sintered 3-mol% yttria-stabilized zirconia ceramics. J Am Ceram Soc. 2022; 105(9): 5562–5568. https://doi.org/10.1111/jace.18542
- 37Ren K, Xia J, Wang Y. Grain growth kinetics of 3 mol. % yttria-stabilized zirconia during flash sintering. J Eur Ceram Soc. 2019; 39(4): 1366–1373. https://doi.org/10.1016/j.jeurceramsoc.2018.11.032
- 38Qin W, Yun J, Thron AM, Van Benthem K. Temperature gradient and microstructure evolution in AC flash sintering of 3 mol% yttria-stabilized zirconia. Mater Manuf Process. 2017; 32(5): 549–556. https://doi.org/10.1080/10426914.2016.1232814
- 39Qin W, Majidi H, Yun J, Benthem K. Electrode effects on microstructure formation during FLASH sintering of yttrium-stabilized zirconia. J Am Ceram Soc. 2016; 99(7): 2253–2259. https://doi.org/10.1111/jace.14234
- 40Narayan J. Grain growth model for electric field-assisted processing and flash sintering of materials. Scr Mater. 2013; 68(10): 785–788. https://doi.org/10.1016/j.scriptamat.2013.01.008
- 41Liu D, Liu J, Gao Y, Liu F, Li K, Xia J, et al. Effect of the applied electric field on the microstructure and electrical properties of flash-sintered 3YSZ ceramics. Ceram Int. 2016; 42(16): 19066–19070. https://doi.org/10.1016/j.ceramint.2016.09.065
- 42Conrad H, Yang D. Effect of the strength of an AC electric field compared to DC on the sintering rate and related grain size of zirconia (3Y-TZP). Mater Sci Eng A. 2013; 559: 591–594. https://doi.org/10.1016/j.msea.2012.08.146
- 43Conrad H, Wang J. Equivalence of AC and DC electric field on retarding grain growth in yttria-stabilized zirconia. Scr Mater. 2014; 72–73: 33–34. https://doi.org/10.1016/j.scriptamat.2013.10.010
- 44Wang J, Yang D, Conrad H. Transient-regime grain growth in nanocrystalline yttria-stabilized zirconia annealed without and with a DC electric field. Scr Mater. 2013; 69(5): 351–353. https://doi.org/10.1016/j.scriptamat.2013.05.001
- 45Yao S, Liu Y, Liu D, Zhao K, Liu J. Flash sintering of Al2O3–ZrO2 ceramics under alternating current electric field. Ceram Int. 2022; 48(24): 36764–36772. https://doi.org/10.1016/j.ceramint.2022.08.239
- 46Ingel RP, Iii DL. Lattice parameters and density for Y2O3-stabilized ZrO2. J Am Ceram Soc. 1986; 69(4): 325–332. https://doi.org/10.1111/j.1151-2916.1986.tb04741.x
- 47Apetz R, Bruggen MPB. Transparent alumina: a light-scattering model. J Am Ceram Soc. 2003; 86(3): 480–486. https://doi.org/10.1111/j.1151-2916.2003.tb03325.x
- 48Muccillo R, Kleitz M, Muccillo ENS. Flash grain welding in yttria stabilized zirconia. J Eur Ceram Soc. 2011; 31(8): 1517–1521. https://doi.org/10.1016/j.jeurceramsoc.2011.02.030
- 49Morisaki N, Yoshida H, Matsui K, Tokunaga T, Sasaki K, Yamamoto T. Synthesis of zirconium oxynitride in air under DC electric fields. Appl Phys Lett. 2016; 109(8):083104. https://doi.org/10.1063/1.4961624
- 50Yoshida H, Biswas P, Johnson R, Mohan MK. Flash-sintering of magnesium aluminate spinel (MgAl2O4) ceramics. J Am Ceram Soc. 2017; 100(2): 554–562. https://doi.org/10.1111/jace.14616
- 51Sharif AA, Imamura PH, Mitchell TE, Mecartney ML. Control of grain growth using intergranular silicate phases in cubic yttria stabilized zirconia. Acta Mater. 1998; 46(11): 3863–3872. https://doi.org/10.1016/S1359-6454(98)00080-9
- 52Aktas B, Tekeli S, Kucuktuvek M. Grain growth and sinterability in Er2O3-doped cubic zirconia (c-ZrO2). Int J Mater Res. 2014; 105(2): 208–214. https://doi.org/10.3139/146.110999
- 53Chokshi AH. Diffusion, diffusion creep and grain growth characteristics of nanocrystalline and fine-grained monoclinic, tetragonal and cubic zirconia. Scr Mater. 2003; 48(6): 791–796. https://doi.org/10.1016/S1359-6462(02)00519-5
- 54Alexander KB, Becher PF, Waters SB, Bleier A. Grain growth kinetics in alumina-zirconia (CeZTA) composites. J Am Ceram Soc. 1994; 77(4): 939–946. https://doi.org/10.1111/j.1151-2916.1994.tb07250.x
- 55Nichols FA. Theory of grain growth in porous compacts. J Appl Phys. 1966; 37(13): 4599–4602. https://doi.org/10.1063/1.1708102
- 56Chaim R, Chevallier G, Weibel A, Estournès C. Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review. J Mater Sci. 2018; 53(5): 3087–3105. https://doi.org/10.1007/s10853-017-1761-7
- 57Chaim R. Activation energy and grain growth in nanocrystalline Y-TZP ceramics. Mater Sci Eng A. 2008; 486(1–2): 439–446. https://doi.org/10.1016/j.msea.2007.09.022
- 58Swaroop S, Kilo M, Argirusis C, Borchardt G, Chokshi AH. Lattice and grain boundary diffusion of cations in 3YTZ analyzed using SIMS. Acta Mater. 2005; 53(19): 4975–4985. https://doi.org/10.1016/j.actamat.2005.05.031
- 59Jalali SIA, Raj R. Reactive flash sintering in a bilayer of zirconia and lanthana: measurement of the diffusion coefficient in real time. J Am Ceram Soc. 2023; 106(2): 867–877. https://doi.org/10.1111/jace.18804
- 60Dong Y, Qi L, Li J, Chen I-W. Electron localization enhances cation diffusion in transition metal oxides: an electronic trebuchet effect, arXiv preprint (2018). arXiv:1808.05196. https://arxiv.org/abs/1808.05198
- 61Dong Y. Redox enhanced slow ion kinetics in oxide ceramics. J Am Ceram Soc. 2024; 107: 1905–1916. https://doi.org/10.1111/jace.19441
- 62Morisaki N, Tokunaga T, Kobayashi K, Kodaira A, Yamamoto T. Excess oxygen-vacancy formed by FAST regime of direct-current electric field during flash sintering for 3 mol%–10 mol% Y2O3-doped ZrO2. Ceram Int. 2022; 48(9): 12091–12097. https://doi.org/10.1016/j.ceramint.2022.01.069