Structural, electronic, and dielectric properties of a large random network model of amorphous zeolitic imidazolate frameworks and its analogues
Hailong Wang
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
Search for more papers by this authorCorresponding Author
Neng Li
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
Correspondence
Neng Li, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China.
Email: [email protected]
and
Wai-Yim Ching, Department of Physics and Astronomy, University of Missouri – Kansas City, Kansas City, MO.
Email: [email protected]
Search for more papers by this authorZhongbo Hu
School of Information and Mathematics, Yangtze University, Jingzhou, Hubei, China
Search for more papers by this authorThomas D. Bennett
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
Search for more papers by this authorXiujian Zhao
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
Search for more papers by this authorCorresponding Author
Wai-Yim Ching
Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, Missouri
Correspondence
Neng Li, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China.
Email: [email protected]
and
Wai-Yim Ching, Department of Physics and Astronomy, University of Missouri – Kansas City, Kansas City, MO.
Email: [email protected]
Search for more papers by this authorHailong Wang
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
Search for more papers by this authorCorresponding Author
Neng Li
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
Correspondence
Neng Li, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China.
Email: [email protected]
and
Wai-Yim Ching, Department of Physics and Astronomy, University of Missouri – Kansas City, Kansas City, MO.
Email: [email protected]
Search for more papers by this authorZhongbo Hu
School of Information and Mathematics, Yangtze University, Jingzhou, Hubei, China
Search for more papers by this authorThomas D. Bennett
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
Search for more papers by this authorXiujian Zhao
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
Search for more papers by this authorCorresponding Author
Wai-Yim Ching
Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, Missouri
Correspondence
Neng Li, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China.
Email: [email protected]
and
Wai-Yim Ching, Department of Physics and Astronomy, University of Missouri – Kansas City, Kansas City, MO.
Email: [email protected]
Search for more papers by this authorAbstract
The amorphous zeolitic imidazolate frameworks (a-ZIFs) models and its analogues (with 918 or 810 atoms, respectively) are constructed based on a larger continuous random network (CRN) model of amorphous SiO2 (a-SiO2) model. The atomic, electronic, and dielectric properties of these structures, which possess different metal nodes and organic linkers, are investigated by well-defined density functional theory (DFT) calculations. The results suggest that all a-ZIFs have ultra-low dielectric constants and a large energy loss function (ELF), which suggests that they may be good candidates for electromagnetic absorptive materials. Most important, these a-ZIFs models offer a base-line model for other amorphous ZIFs for further research on models containing vacancies, defects, doping or under high pressure or high temperature.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
jace16308-sup-0001-FigS1.tifimage/tif, 1.5 MB | |
jace16308-sup-0002-FigS2.tifimage/tif, 1.6 MB | |
jace16308-sup-0003-DataS1.docxWord document, 48.1 KB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Kitagawa S. Metal–organic frameworks (MOFs). Chem Soc Rev. 2014; 43: 5415–8.
- 2Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013; 341: 1230444.
- 3Yu JM, Xie LH, Li JR, Ma YG, Seminario JM, Balbuena PB. CO2 Capture and Separations Using MOFs: computational and Experimental Studies. Chem Rev. 2017; 117: 9674–754.
- 4Huang YB, Liang J, Wang XS, Cao R. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chem Soc Rev. 2017; 46: 126–57.
- 5Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK. Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem Soc Rev. 2017; 46: 3242–85.
- 6Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA. 2006; 103: 10186–91.
- 7Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 2008; 319: 939–43.
- 8Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O'Keeffe M, Yaghi OM. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res. 2010; 43: 58–67.
- 9Chen BL, Yang ZX, Zhu YQ, Xia YD. Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J Mater Chem A. 2014; 2: 16811–31.
- 10Yao JF, Wang HT. Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chem Soc Rev. 2014; 43: 4470–93.
- 11Pattengale B, Yang SZ, Lee S, Huang J. Mechanistic probes of zeolitic imidazolate framework for photocatalytic application. ACS Catal. 2017; 7: 8446–53.
- 12Mottillo C, Friščić T. Carbon dioxide sensitivity of zeolitic imidazolate frameworks. Angew Chem Int Ed. 2014; 53: 7471–4.
- 13Bennett TD, Cheetham AK. Amorphous metal–organic frameworks. Acc Chem Res. 2014; 47: 1555–62.
- 14Gaillac R, Pullumbi P, Beyer KA, Chapman KW, Keen DA, Bennett TD, et al. Liquid metal–organic frameworks. Nat Mater. 2017; 16: 1149–54.
- 15Xu D, Liu YD, Tian YJ, Wang LM. Communication: enthalpy relaxation in a metal-organic zeolite imidazole framework (ZIF-4) glass-former. J Chem Phys. 2017; 146: 121101.
- 16Adhikari P, Li N, Rulis P, Ching WY. Deformation behavior of an amorphous zeolitic imidazolate framework–from a supersoft material to a complex organometallic alloy. Phys Chem Chem Phys. 2018; 20: 29001–11.
- 17Bennett TD, Tan JC, Yue YZ, Baxter E, Ducati C, Terrill NJ, et al. Hybrid glasses from strong and fragile metal-organic framework liquids. Nat Commun. 2015; 6: 8079.
- 18Bennett TD, Yue YZ, Li P, Qiao A, Tao H, Greaves GN, et al. Melt-quenched glasses of metal–organic frameworks. J Am Chem Soc. 2016; 138: 3484–92.
- 19Qiao A, Bennett TD, Tao HZ, Krajnc A, Mali G, Doherty CM, et al. A metal-organic framework with ultrahigh glass-forming ability. Sci Adv. 2018; 4: eaao6827.
- 20Bennett TD, Goodwin AL, Dove MT, Keen DA, Tucker MG, Barney ER, et al. Structure and properties of an amorphous metal-organic framework. Phys Rev Lett. 2010; 104: 115503.
- 21Bennett TD, Simoncic P, Moggach SA, Gozzo F, Macchi P, Keen DA, et al. Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4). Chem Commun. 2011; 47: 7983–5.
- 22Bennett TD, Cao S, Tan JC, Keen DA, Bithell EG, Beldon PJ, et al. Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks. J Am Chem Soc. 2011; 133: 14546–9.
- 23Ching WY. Microscopic calculation of localized electron states in an intrinsic glass. Phys Rev Lett. 1981; 46: 607.
- 24Tao HZ, Bennett TD, Yue YZ. Melt-quenched hybrid glasses from metal–organic frameworks. Adv Mater. 2017; 29: 1601705.
- 25Thornton AW, Jelfs KE, Konstas K, Doherty C, Hill A, Cheetham AK, et al. Porosity in metal–organic framework glasses. Chem Commun. 2016; 52: 3750.
- 26Gao M, Misquitta AJ, Rimmer LHN, Dove MT. Molecular dynamics simulation study of various zeolitic imidazolate framework structures. Dalton Trans. 2016; 45: 4289–302.
- 27Tan JC, Civalleri B, Erba A, Albanese E. Quantum mechanical predictions to elucidate the anisotropic elastic properties of zeolitic imidazolate frameworks: ZIF-4 vs ZIF-zni. CrystEngComm. 2015; 17: 375–82.
- 28Yang YJ, Shin YK, Li SC, Bennett TD, Duin ACT, Mauro JC. Enabling computational design of ZIFs using reaxFF. J Phys Chem B. 2018; 122: 9616–24.
- 29Bennett TD, Horike S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat Rev Mater. 2018; 3: 431–40.
- 30Warmbier R, Quandt A, Seifert G. Dielectric properties of selected metal–organic frameworks. J Phys Chem C. 2014; 118: 11799–805.
- 31Zagorodniy K, Seifert G, Hermann H. Metal-organic frameworks as promising candidates for future ultralow-k dielectrics. Appl Phys Lett. 2010; 97: 251905.
- 32Usman M, Mendiratta S, Lu KL. Metal–organic frameworks: new interlayer dielectric materials. ChemElectroChem. 2015; 2: 786–8.
- 33Redel E, Wang ZB, Walheim S, Liu JX, Gliemann H, Wöll C. On the dielectric and optical properties of surface-anchored metal-organic frameworks: a study on epitaxially grown thin films. Appl Phys Lett. 2013; 103: 091903.
- 34Titov K, Zeng ZX, Ryder MR, Chaudhari AK, Civalleri B, Kelley CS, et al. Probing dielectric properties of metal–organic frameworks: MIL-53(Al) as a model system for theoretical predictions and experimental measurements via synchrotron far- and mid-infrared spectroscopy. J Phys Chem Lett. 2017; 8: 5035–40.
- 35Mendiratta S, Usman M, Chang CC, Lee YC, Chen JW, Wu MK, et al. Zn (ii)-based metal–organic framework: an exceptionally thermally stable, guest-free low dielectric material. J Mater Chem C. 2017; 5: 1508–13.
- 36Eslava S, Zhang LP, Esconjauregui S, Yang JW, Vanstreels K, Baklanov MR, et al. Metal-organic framework ZIF-8 films as low-k dielectrics in microelectronics. Chem Mater. 2013; 25: 27–33.
- 37Cleuvenbergen SV, Stassen I, Gobechiya E, Zhang YX, Markey K, Vos DE, et al. ZIF-8 as nonlinear optical material: influence of structure and synthesis. Chem Mater. 2016; 28: 3203–9.
- 38Ryder MR, Donà L, Vitillo JG, Civalleri B. Understanding and controlling the dielectric response of metal–organic frameworks. ChemPlusChem. 2018; 83: 308–16.
- 39Ryder MR, Zeng ZX, Titov K, Sun YT, Mahdi EM, Flyagina I, et al. Dielectric properties of zeolitic imidazolate frameworks in the broad-band infrared regime. J Phys Chem Lett. 2018; 9: 2678–84.
- 40Adhikari P, Xiong M, Li N, Zhao XJ, Rulis P, Ching WY. Structure and electronic properties of a continuous random network model of an amorphous zeolitic imidazolate framework (a-ZIF). J Phys Chem C. 2016; 120: 15362–8.
- 41Zhang JP, Zhu AX, Lin RB, Qi XL, Chen XM. Pore surface tailored SOD-type metal–organic zeolites. Adv Mater. 2011; 23: 1268–71.
- 42Gao HQ, Wei WJ, Dong LY, Feng GQ, Jiang XX, Wu R, et al. Enhanced framework rigidity of a zeolitic metal-azolate via ligand substitution. Crystals. 2017; 7: 99.
- 43Zhang JP, Wu T, Zhou C, Chen SM, Feng PY, Bu XH. Zeolitic boron imidazolate frameworks. Angew Chem. 2009; 121: 2580–3.
- 44Wu T, Zhang JP, Bu XH, Feng PY. Variable lithium coordination modes in two-and three-dimensional lithium boron imidazolate frameworks. Chem Mater. 2009; 21: 3830–7.
- 45Galvelis R, Slater B, Cheetham AK, Mellot-Draznieks C. Comparison of the relative stability of zinc and lithium-boron zeolitic imidazolate frameworks. CrystEngComm. 2012; 14: 374–8.
- 46Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964; 136: B864–71.
- 47Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter. 1996; 54: 11169–86.
- 48Ching WY, Rulis P. Electronic structure methods for complex materials: the orthogonalized linear combination of atomic orbitals. Oxford, UK: Oxford University Press, 2012.
- 49Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77: 3865–8.
- 50Huang LP, Durandurdu M, Kieffer J. Transformation pathways of silica under high pressure. Nat Mater. 2006; 5: 977–81.
- 51Huang MZ, Ching WY. Electron states in a nearly ideal random-network model of amorphous SiO2 glass. Phys Rev B Condens Matter. 1996; 54: 5299–308.
- 52Huang MZ, Ouyang LZ, Ching WY. Electron and phonon states in an ideal continuous random network model of a−SiO2 glass. Phys Rev B. 1999; 59: 3540–50.
- 53Li N, Ching WY. Structural, electronic and optical properties of a large random network model of amorphous SiO2 glass. J Non-Cryst Solids. 2014; 383: 28–32.
- 54Roux SL, Petkov V. ISAACS–interactive structure analysis of amorphous and crystalline systems. J Appl Cryst. 2010; 43: 181–5.
- 55Li N, Sakidja R, Aryal S, Ching WY. Densification of a continuous random network model of amorphous SiO2 glass. Phys Chem Chem Phys. 2014; 16: 1500–14.
- 56Aryal S, Rulis P, Ching WY. Mechanism for amorphization of boron carbide B4C under uniaxial compression. Phys Rev B. 2011; 84: 184112.
- 57Sallis S, Butler KT, Quackenbush NF, Williams DS, Junda M, Fischer DA, et al. Origin of deep subgap states in amorphous indium gallium zinc oxide: chemically disordered coordination of oxygen. Appl Phys Lett. 2014; 104: 232108.
- 58Lashgari H, Boochani A, Shekaari A, Solaymani S, Sartipi E, Mendi RT. Electronic and optical properties of 2D graphene-like ZnS: DFT calculations. Appl Surf Sci. 2016; 369: 76–81.